首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.  相似文献   

5.
6.
The vast amount of recent progress made on the sequence of the human genome has allowed an unprecedented examination of cis-regulatory networks. These networks consist of functional elements such as promoters, enhancers, silencers, and insulators, and their coordinated activity is responsible for regulation of gene expression. Recent studies surveyed the entire genome, identifying novel elements and evaluating functional differences in respect to development. These investigations present the first steps towards a global regulatory map for expression in the human genome.  相似文献   

7.
Abstract The puffer fish Takifugu rubripes (Fugu), with its compact genome, is an ideal model organism for comparative genomics. Sonic hedgehog (Shh) is a key protein in the patterning of differentiating cells during embryonic development. We have sequenced the Fugu Shh gene and compared it with the mammalian and zebrafish orthologs, identifying a number of novel conserved, non-coding sequences upstream of exon one and within the two introns. Additional conserved sequences serve to delineate activator regions and enhancers previously characterized through functional analysis. Control elements can thus be rapidly and effectively predicted by comparative methodology in its own right as well as complementing other, functional methods. This work demonstrates the value of using Fugu in comparative genomics, which has allowed identification of new putative regulatory elements, as well as corroborating enhancers identified by the more traditional deletion mapping method.  相似文献   

8.
Enormity of the metazoan genomes and divergence in their regulation impose a serious constraint on the comprehensive understanding of context specific gene regulation. DNA elements located in the promoter, enhancer, and other regulatory regions of the genome dictate the temporal and spatial patterns of gene activities. However, owing to the diminutive and variable nature of the regulatory DNA elements, their identification and location remains a major challenge. We have developed an efficient strategy for isolating a repertoire of target sites for sequence specific DNA binding proteins from embryonic chick heart. A comprehensive library of such sequences was constructed and authenticated using various parameters including in silico determination of functional binding sites. This approach, therefore, for the first time, established an experimental and conceptual framework for defining the entire repertoire of functional DNA elements in any cellular context.  相似文献   

9.
Recent studies have revealed that non-coding regions comprise the vast majority of the human genome and long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs that has been implicated in a variety of biological processes. Abnormal expression of lncRNAs has also been linked to different human diseases including cancers, yet the regulatory mechanisms and functional effects of lncRNAs are still ambiguous, and the molecular details also need to be confirmed. Unlike protein-coding gene, it is much more challenging to unravel the roles of lncRNAs owing to their unique and complex features such as functional diversity and low conservation among species, which greatly hamper their experimental characterization. In this review, we summarize and discuss both conventional and advanced approaches for the identification and functional characterization of lncRNAs related to hematological malignancies. In particular, the utility and advancement of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system as gene-editing tools are envisioned to facilitate the molecular dissection of lncRNAs via different knock-in/out strategies. Besides experimental considerations specific to lncRNAs, the roles of lncRNAs in the pathogenesis and progression of leukemia are also highlighted in the review. We expect that these insights may ultimately lead to clinical applications including development of biomarkers and novel therapeutic approaches targeting lncRNAs.  相似文献   

10.
Epigenetic elements of the genome, i.e. elements that determine stably inherited changes in gene expression without changes in the genomic DNA sequence, are essential tools of genetic regulation in higher eukaryotes. The complete sequencing of the human and other genomes allowed studies to be started on positioning of these elements within long multigenic regions of the genome, which is a prerequisite for a comprehensive functional annotation of genomes. This mini-review considers some recent experimental approaches to the high-throughput identification and mapping of epigenetic elements of mammalian genomes, including the mapping of methylated CpG sites, open and closed chromatin regions, and DNase I hypersensitivity sites.  相似文献   

11.
An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.  相似文献   

12.
DNA regulatory sequences control gene expression by forming DNA-protein complex with specific DNA binding protein. A major task of studies of gene regulation is to identify DNA regulatory sequences in genome-wide. Especially with the rapid pace of genome project, the function of DNA regulatory sequences becomes one of the focuses in functional genome era. Several approaches for screening and characterizing DNA regulatory sequences emerged one by one, from initial low-throughput methods to high-throughput strategies. Even though at present bioinformatics tools facilitate the process of screening regulatory fragments, the most reliable results will come from experimental test. This article highlights some experimental methods for the identification of regulatory sequences. A brief review of the history and procedures for selection methods are provided. Tendency as well as limitation and extension of these methods are also presented.  相似文献   

13.
在人类基因组测序已经完成的"后基因组"时代,对基因组序列的功能注释,尤其是各种DNA调控元件的鉴定,已成为进一步理解人类基因组复杂机制的瓶颈问题.最近,针对染色质状态图谱的大规模研究工作,揭示了各类DNA元件特征性的染色质修饰标记.这些研究结果推动了一系列基于有监督和无监督学习的DNA元件预测方法的产生,其中一些方法已经成功应用于多个基因组的DNA元件预测,并且已成为未知基因组的常规注释工具.这些预测方法因其算法特点和预测策略不同而适用于不同类型的DNA元件预测任务.大多数情况下,使用者需要联合使用多个预测方法来达到预测敏感性和特异性的平衡.尽管各类算法在DNA元件预测中都有一些成功的应用,但每一类算法都有其特有的弊端,需要使用者认真避免.本文回顾了前期和当下DNA元件预测方法的主要类型,全面分析了各类方法的优缺点,指出了下一步可以改进的方向.本综述中的分析和观点有助于读者深入理解DNA元件预测算法的主要原则,进而在相关研究中更好地应用这些方法.  相似文献   

14.
15.
16.
Due to current experimental limitations in peroxisome proteome research, the identification of low-abundance regulatory proteins such as protein kinases largely relies on computational protein prediction. To test and improve the identification of regulatory proteins by such a prediction-based approach, the Arabidopsis genome was screened for genes that encode protein kinases with predicted type 1 or type 2 peroxisome targeting signals (PTS1 or PTS2). Upon transient expression in onion epidermal cells, the predicted PTS1 domains of four of the seven protein kinases re-directed the reporter protein, enhanced yellow green fluorescent (EYFP), to peroxisomes and were thus verified as functional PTS1 domains. The full-length fusions, however, remained cytosolic, suggesting that PTS1 exposure is induced by specific signals. To investigate why peroxisome targeting of three other kinases was incorrectly predicted and ultimately to improve the prediction algorithms, selected amino acid residues located upstream of PTS1 tripeptides were mutated and the effect on subcellular targeting of the reporter protein was analysed. Acidic residues in close proximity to major PTS1 tripeptides were demonstrated to inhibit protein targeting to plant peroxisomes even in the case of the prototypical PTS1 tripeptide SKL>, whereas basic residues function as essential auxiliary targeting elements in front of weak PTS1 tripeptides such as SHL>. The functional characterization of these inhibitory and essential enhancer-targeting elements allows their consideration in predictive algorithms to improve the prediction accuracy of PTS1 proteins from genome sequences.  相似文献   

17.
18.
19.
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号