首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid influence on growth of vascular wall cells in culture   总被引:5,自引:0,他引:5  
Primary mass cultures and cloned strains of bovine aortic endothelial and smooth muscle cells were investigated with respect to their growth responses to glucocorticoid hormones. The growth of primary endothelial cells was not influenced by glucocorticoid treatment in the absence of fibroblast growth factor (FGF) but was inhibited by about 30% in the presence of FGF; with cloned endothelial cells, glucocorticoids were also growth inhibitory only in the presence of FGF. In contrast, smooth muscle cell growth was inhibited 30%-70% by glucocorticoid treatment in both primary cultures and in the cloned strains in the absence of FGF, and this inhibition was totally abolished by the addition of FGF for both cultures. The corticosteroid influences on cell growth were glucocorticoid specific, concentration dependent, and were observed to be independent of the serum concentration. The results indicate that glucocorticoid hormones have direct and pronounced growth inhibiting effects on aortic smooth muscle cells but only minimal effects on endothelial cells when these components of the vascular wall are analyzed under identical conditions in vitro.  相似文献   

2.
Using cultured cells from bovine and rat aortas, we have examined the possibility that endothelial cells might regulate the growth of vascular smooth muscle cells. Conditioned medium from confluent bovine aortic endothelial cells inhibited the proliferation of growth-arrested smooth muscle cells. Conditioned medium from exponential endothelial cells, and from exponential or confluent smooth muscle cells and fibroblasts, did not inhibit smooth muscle cell growth. Conditioned medium from confluent endothelial cells did not inhibit the growth of endothelial cells or fibroblasts. In addition to the apparent specificity of both the producer and target cell, the inhibitory activity was heat stable and not affected by proteases. It was sensitive flavobacterium heparinase but not to hyaluronidase or chondroitin sulfate ABC lyase. It thus appears to be a heparinlike substance. Two other lines of evidence support this conclusion. First, a crude isolate of glycosaminoglycans (TCA-soluble, ethanol-precipitable material) from endothelial cell-conditioned medium reconstituted in 20 percent serum inhibited smooth muscle cell growth; glycosaminoglycans isolated from unconditioned medium (i.e., 0.4 percent serum) had no effect on smooth muscle cell growth. No inhibition was seen if the glycosaminoglycan preparation was treated with heparinase. Second, exogenous heparin, heparin sulfate, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate ABC, and hyaluronic acid were added to 20 percent serum and tested for their ability to inhibit smooth muscle cell growth. Heparin inhibited growth at concentrations as low as 10 ng/ml. Other glycosaminoglycans had no effect at doses up to 10 μg/ml. Anticoagulant and non- anticoagulant heparin were equally effective at inhibiting smooth muscle cell growth, as they were in vivo following endothelial injury (Clowes and Karnovsk. Nature (Lond.). 265:625-626, 1977; Guyton et al. Circ. Res. 46:625-634, 1980), and in vitro following exposure of smooth muscle cells to platelet extract (Hoover et al. Circ. Res. 47:578-583, 1980). We suggest that vascular endothelial cells may secrete a heparinlike substance in vivo which may regulate the growth of underlying smooth muscle cells.  相似文献   

3.
A system is described which uses microcarrier culture techniques for the co-cultivation of different cell types without direct contact between cell populations. In co-cultivation, arterial endothelial cells induced proliferation in > 90% of quiescent homologous arterial smooth muscle cells in the absence of serum-derived growth factors. The microcarrier coculture system allows investigation of potent local humoral interactions between vascular cells in vitro.  相似文献   

4.
Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H(2)O(2) did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells.  相似文献   

5.
Summary Primary cultures of rat vascular endothelial and smooth muscle cells were developed as models to study xenobiotic-induced cytotoxicity. Endothelial and smooth muscle cells were isolated by enzymatic digestion and mechanical dissociation of rat thoracic aortae. Optimal cell growth and minimal fibroblast contamination in cultures of both cell types were obtained in Medium 199 supplemented with 10% fetal bovine serum. Cultured cells were characterized by distinctive morphologic features and growth patterns. Intercellular endothelial cell junctions were selectively stained with silver nitrate. Endothelial cells also exhibited a nonthrombogenic surface, as reflected by platelet-binding studies. Confluent cultures of smooth muscle cells, but not endothelial cells, contracted in response to norepinephrine (10 μM). Cultures of both cell types were exposed to acrolein (2, 5 or 50 ppm), an environmental pollutant, for 4 24 h. Morphologic damage, lactate dehydrogenase release, and cellular thiol content were used as indices of cytotoxicity. Acrolein-induced enzyme leakage and morpholgic alterations were dose- and time-dependent and more pronounced in cultures of smooth muscle cells than in endothelial cells. The total thiol content of endothelial cells exposed to acrolein (50 ppm) for 24 h was not significantly different from that of respective controls. In contrast, the content of treated smooth muscle cells was higher than that of controls. These observations show that primary cultures of vascular cells provide a useful model to evaluate xenobiotic-induced cytotoxicity. The information obtained using a cell culture system may be complemented by the use of other in vivo and in vitro models to determine the mechanisms by which xenobiotics cause vascular cell injury.  相似文献   

6.
Liposomes made by sonication of egg yolk phosphatidyl choline support the proliferation of low-density bovine vascular and corneal endothelial cells, and vascular smooth muscle cells maintained on basement laminacoated dishes and exposed to a defined medium supplemented with transferrin. The optimal growth-promoting effect of phosphatidyl choline was observed at concentrations of 25 μg/ml for low-density cultures of vascular smooth muscle cells, and 100 μg/ml for vascular and corneal endothelial cells. The growth rate and final cell density of vascular endothelial cells exposed to a synthetic medium supplemented with transferrin and either high-density lipoproteins or phosphatidyl choline has been compared. Although cultures exposed to phosphatidyl choline reached a final cell density similar to that of cultures exposed to high-density lipoproteins, they had a longer average doubling time (17 h vs. 12 h) during their logarithmic growth phase and a shorter lifespan (17 generations vs. 30 generations). Similar observations were made in the case of vascular smooth muscle cells or bovine corneal endothelial cells maintained in medium supplemented with transferrin, fibroblast growth factor (FGF) or epidermal growth factor (EGF), and insulin and exposed to either high-density lipoproteins or phosphatidyl choline. Since phosphatidyl choline can, for the most part, replace highdensity lipoproteins in supporting the proliferation of various cell types, it is likely that the growth stimulating signal conveyed by high-density lipoproteins is associated with its polar lipid fraction, which is composed mostly of phosphatidyl cholines.  相似文献   

7.
EphB2 and its ligands regulate interactions between endothelial and mesenchymal cells in developing arteries. In adult arteries, the relationship between smooth muscle cells and overlying intact endothelium is responsible for maintaining the health of the vessel. Heparin inhibits vascular smooth muscle cell growth in culture and intimal hyperplasia following endothelial denudation. Using gene microarrays, we identified the tyrosine kinase receptor EphB2 as being differentially expressed in response to continuous intravenous heparin administration in the rabbit model of arterial injury. EphB2 protein levels increased in cultured bovine vascular smooth muscle cells following serum stimulation and were decreased in a dose-dependent fashion by heparin. Fc chimeras of the binding domain of the EphB2 ligands blocked the formation of the EphB2 ligand-receptor complex and reduced growth of serum-stimulated vascular smooth muscle cells in a dose-dependent fashion. Activation of the ligand by an Fc chimera to EphB2 followed a parabolic dose-response growth curve, indicating growth stimulation until the chimera begins to compete with native receptors. Co-administration of EphB2/Fc chimera with heparin shifted the dose-response curve to the right. These data indicate a possible new route of Heparin's antiproliferative effect and a role of EphB2 and its ligands in vascular smooth muscle cell proliferation.  相似文献   

8.
9.
An endothelial cell growth factor with unique specificity for vascular endothelial cells has been purified from the conditioned medium of the AtT-20 pituitary cell line. This growth factor, which has been characterized as a homodimer composed of two subunits with mol. wts of 23 kd is a potent mitogen for vascular endothelial cells in vitro with activity detectable at 50 pg/ml and saturation at 1 ng/ml. It was also angiogenic in vivo. In contrast with other endothelial mitogens of the fibroblast growth factor family, it has a unique target cell specificity. It did not stimulate the growth of other cell types of the vascular system such as vascular smooth muscle cells or that of mesoderm and neuroectoderm derived cells. Microsequencing revealed an amino-terminal sequence with no homology to any known protein. The release of this novel endothelial cell growth factor by pituitary derived cells and its unique target cell specificity suggest that it could play an important role in the angiogenic process.  相似文献   

10.
Conflicting findings from clinical trials on the use of aspirin in preventing myocardial infarction emphasize the importance of understanding the effects of aspirin on vascular cells. Cultured vascular endothelial cells and smooth muscle cells of human, rat and bovine origin synthesized prostacyclin, a key component in vascular homeostasis, when superfused with 14C arachidonic acid. Prostacyclin synthesis was inactivated following brief treatment with aspirin, which irreversibly acetylates cyclooxygenase. Marked differences were observed between endothelial and smooth muscle cells in the recovery of cyclooxygenase after aspirin treatment. Smooth muscle cells recovered within 3 hours by a process that required serum factors replaceable by epidermal growth factor (EGF) and TGF-beta. Recovery in both smooth muscle and endothelial cells was blocked by cycloheximide but not by actinomycin-D. Endothelial cell recovery occurred much more slowly, requiring up to 24 hours and was not dependent on serum factors or EGF. Furthermore, it was suppressed by growth inducing agents such as endothelial cell growth factor (ECGF) and was enhanced by conditions favoring growth arrest and cellular differentiation. Regulation of expression and recovery of cyclooxygenase following inactivation by aspirin thus differs considerably in the endothelial and smooth muscle compartments of the vasculature.  相似文献   

11.
Summary Heparin-binding (fibroblast) growth factors (HBGF) are mitogens for both human aortic endothelial and smooth muscle cells. Under similar conditions, both vascular cells display similar numbers of specific HBGF binding sites with similar apparent affinity for HBGF. The monokines, interleukin-1 and tumor necrosis factor, inhibit endothelial cell growth and stimulate smooth muscle cell growth. The opposite mitogenic effects correlate with reduction and increase in HBGF receptor number displayed by endothelial and smooth muscle cells, respectively. These results suggest that the two monokines may depress endothelial cell regeneration and augment smooth muscle cell hyperplasia by differential modulation of the HBGF receptor in the two vascular cell types. This work was supported by US Public Health Service grants DK35310 and HL33487. H. S. is a visiting scientist from Takeda Chemical Industries, Ltd., Central Research Division, Juso-Honmachi-2, Yodogawa-ku, Osaka 532, Japan.  相似文献   

12.
Acute hypoxia causes pulmonary vasoconstriction and coronary vasodilation. The divergent effects of hypoxia on pulmonary and coronary vascular smooth muscle cells suggest that the mechanisms involved in oxygen sensing and downstream effectors are different in these two types of cells. Since production of reactive oxygen species (ROS) is regulated by oxygen tension, ROS have been hypothesized to be a signaling mechanism in hypoxia-induced pulmonary vasoconstriction and vascular remodeling. Furthermore, an increased ROS production is also implicated in arteriosclerosis. In this study, we determined and compared the effects of hypoxia on ROS levels in human pulmonary arterial smooth muscle cells (PASMC) and coronary arterial smooth muscle cells (CASMC). Our results indicated that acute exposure to hypoxia (Po(2) = 25-30 mmHg for 5-10 min) significantly and rapidly decreased ROS levels in both PASMC and CASMC. However, chronic exposure to hypoxia (Po(2) = 30 mmHg for 48 h) markedly increased ROS levels in PASMC, but decreased ROS production in CASMC. Furthermore, chronic treatment with endothelin-1, a potent vasoconstrictor and mitogen, caused a significant increase in ROS production in both PASMC and CASMC. The inhibitory effect of acute hypoxia on ROS production in PASMC was also accelerated in cells chronically treated with endothelin-1. While the decreased ROS in PASMC and CASMC after acute exposure to hypoxia may reflect the lower level of oxygen substrate available for ROS production, the increased ROS production in PASMC during chronic hypoxia may reflect a pathophysiological response unique to the pulmonary vasculature that contributes to the development of pulmonary vascular remodeling in patients with hypoxia-associated pulmonary hypertension.  相似文献   

13.
BACKGROUND: Balloon injury of the arterial wall induces increased vascular smooth cell proliferation, enhanced elastic recoil, and abnormalities in thrombosis, each of which contribute to regrowth of intima and the lesion of restenosis. Several gene transfer approaches have been used to inhibit such intimal smooth muscle cell growth. In this report, adenoviral gene transfer of beta-interferon (beta-IFN) was analyzed in a porcine model of balloon injury to determine whether a secreted growth inhibitory protein might affect the regrowth of vascular smooth muscle cells in vitro and in arteries. MATERIALS AND METHODS: An adenoviral vector encoding beta-interferon (ADV-beta-IFN) was prepared and used to infect porcine vascular smooth muscle cells in a porcine balloon injury model. Its antiproliferative effect was analyzed in vitro and in vivo. RESULTS: Expression of recombinant porcine beta-IFN in vascular smooth muscle cells reduced cell proliferation significantly in vitro, and supernatants derived from the beta-IFN vector inhibited vascular smooth muscle cell proliferation relative to controls. When introduced into porcine arteries after balloon injury, a reduction in cell proliferation was observed 7 days after gene transfer measured by BrdC incorporation (ADV-delta E1 arteries 14.5 +/- 1.2%, ADV-beta IFN 6.8 +/- 0.8%, p < 0.05, unpaired, two-tailed t-test). The intima-to-media area ratio was also reduced (nontransfected arteries, 0.70 +/- 0.05; ADV-delta E1 infected arteries, 0.69 +/- 0.06; ADV-beta-IFN infected arteries, 0.53 +/- 0.03; p < 0.05, ANOVA with Dunnett t-test). No evidence of organ toxicity was observed, and regrowth of the endothelial cell surface was observed 3-6 weeks after balloon injury. CONCLUSIONS: Gene transfer of an adenoviral vector encoding beta-IFN into balloon-injured arteries reduced vascular smooth muscle proliferation and intimal formation. Expression of this gene product may have potential application for the treatment of vascular proliferative diseases.  相似文献   

14.
15.
In a previous study, we found a marked difference in the release of a cytokine, neutrophil chemoattractant activity (NCA), from cultured endothelial cells exposed to acute decreases in ambient oxygen, depending on the vascular bed of origin. In the current study, we used this cytokine to evaluate the effect of long-term exposure to decreased oxygen on endothelial cell function. We found that, in aortic and pulmonary arterial endothelial cells maintained for months in decreased ambient oxygen (10 or 3% oxygen), exposure to acute decreases in ambient oxygen caused a change in the pattern of NCA release; however, the differential response between the two cell types persisted. Aortic endothelial cells release NCA when exposed acutely to a level of oxygen below that in which they have been chronically maintained. In contrast, pulmonary arterial endothelial cells release NCA only when exposed to 0% oxygen acutely, but only if grown chronically in 10% oxygen; otherwise there was no release of NCA. As another indicator of endothelial cell function, we evaluated the effects of acute hypoxic exposure on prostacyclin production by endothelial cells maintained in 21 or 3% oxygen. If grown in 21% oxygen, both cell types decreased prostacyclin production upon exposure to 0% oxygen. However, when grown in 3% oxygen, only aortic endothelial cells decreased prostacyclin production when exposed acutely to 0% oxygen; pulmonary arterial endothelial cell prostacyclin production did not change. This study demonstrating the persistence of a differential pattern of NCA release and the appearance of a differential pattern of prostacyclin production after a long-term decrease in environmental oxygen suggests that the capacity of certain vascular endothelial cells to respond to decreases in oxygen concentration is carried by the cell throughout its existence. Thus, in certain situations, vascular endothelial cells may be important in sensing acute decreases in ambient oxygen.  相似文献   

16.
Endothelial cells derived from human pulmonary arteries incorporate (3H)-glucosamine and 35SO4 into glycosaminoglycans and into the carbohydrate side chains of glycoproteins. These 3H/35S-carbohydrate chains were isolated from cells and culture medium after Pronase digestion. The 3H/35S-glycosaminoglycans were separated from the 3H/35S glycopeptides by chromatography on Sephadex G-50. The distribution of cellular glycosaminoglycans and glycopeptides indicated that 30–60% of the cellular 35S-glycopeptides may be associated with the matrix components that are synthesized by the cell and attached to a plastic substratum. Human pulmonary arterial endothelial cells were grown on collagen or on a matrix derived from vascular smooth muscle cells in order to investigate how smooth muscle cell extracellular matrix components may regulate the synthesis of endothelial cell glycoconjugates. Endothelial cells grown on plastic release various proportions of the glycoconjugates they synthesize into the culture medium. However, these same cells, when grown on substratum composed of extracellular matrix materials, synthesized altered proportions of cell-associated glycosaminoglycans and reduced the levels of total glycosaminoglycans they released into the culture medium. Thus the growth of endothelial cells on a matrix of smooth muscle cell components indicates that the glycosaminoglycan materials released into the culture medium by cells grown on a plastic substratum may not be an accurate reflection of the levels or composition of extracellular matrix materials made by endothelial cells in vivo.  相似文献   

17.
Information is rapidly emerging regarding the important role of the arterial vasa vasorum in a variety of systemic vascular diseases. In addition, increasing evidence suggests that progenitor cells of bone marrow (BM) origin may contribute to postnatal neovascularization and/or vascular wall thickening that is characteristic in some forms of systemic vascular disease. Little is known regarding postnatal vasa formation and the role of BM-derived progenitor cells in the setting of pulmonary hypertension (PH). We sought to determine the effects of chronic hypoxia on the density of vasa vasorum in the pulmonary artery and to evaluate if BM-derived progenitor cells contribute to the increased vessel wall mass in a bovine model of hypoxia-induced PH. Quantitative morphometric analyses of lung tissue from normoxic and hypoxic calves revealed that hypoxia results in a dramatic expansion of the pulmonary artery adventitial vasa vasorum. Flow cytometric analysis demonstrated that cells expressing the transmembrane tyrosine kinase receptor for stem cell factor, c-kit, are mobilized from the BM in the circulation in response to hypoxia. Immunohistochemistry revealed an increase in the expression of c-kit+ cells together with vascular endothelial growth factor, fibronectin, and thrombin in the hypoxia-induced remodeled pulmonary artery vessel wall. Circulating mononuclear cells isolated from neonatal calves exposed to hypoxia were found to differentiate into endothelial and smooth muscle cell phenotypes depending on culture conditions. From these observations, we suggest that the vasa vasorum and circulating progenitor cells could be involved in vessel wall thickening in the setting of hypoxia-induced PH.  相似文献   

18.
The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.  相似文献   

19.
Recently improved culture conditions for human adult arterial endothelial and smooth muscle cells from a wide variety of donors have been used to study the effects of lipoproteins on proliferation of both cell types in low serum culture medium. Optimal growth of endothelial and smooth muscle cells in an optimal nutrient medium (MCDB 107) containing epidermal growth factor, a partially purified fraction from bovine brain, and 1% (v/v) lipoprotein-deficient serum was dependent on either high- or low-density lipoprotein. High- and low-density lipoprotein stimulated cell growth by three- and five-fold, respectively, over a 6-day period. Optimal stimulation of both endothelial and smooth muscle cell growth occurred between 20 and 60 micrograms/ml of high- and low-density lipoproteins, respectively. No correlation between the activation of 3-hydroxyl-3-methylglutaryl coenzyme. A reductase activity and lipoprotein-stimulated cell proliferation was observed. Lipid-free total apolipoproteins or apolipoprotein C peptides from high-density lipoprotein were partially effective and together with oleic acid effectively replaced native high-density lipoprotein for the support of endothelial cell growth. In contrast, apolipoproteins or apolipoprotein C peptides from high-density lipoprotein alone or with oleic acid had no effect on smooth muscle cell proliferation. The results suggest a functional role of high- and low-density lipoproteins and apolipoproteins in the proliferation of human adult endothelial and smooth muscle cells.  相似文献   

20.
Long-term culture of human endothelial cells   总被引:9,自引:0,他引:9  
Human umbilical vein endothelial cells can be grown in vitro for 28 passages (CPDL 58) in Medium 199 supplemented with newborn bovine serum and a partially purified growth factor derived from bovine brain. Newborn bovine serum is superior to fetal bovine serum for the proliferation of human umbilical vein endothelial cells seeded at low density in the presence of the growth factor. The endothelial cells, which can be passaged every 7 to 10 d at a 1-to-5 split ratio, retain their morphological and biochemical characteristics. The proliferation of cells seeded at low density (10(3)/cm2) is proportional to the concentration of the growth factor present in the medium. The growth factor, which has an isoelectric point between 5.0 and 5.5, can support cell proliferation at reduced serum concentrations; half-maximal growth is achieved in medium containing the growth factor and 3% serum. The brain endothelial cell growth factor does not stimulate DNA synthesis significantly in cultures of human skin fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号