首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
用体内-体外方法分离了蓝猪耳精细胞。用酶解和解剖方法分离了其成熟卵细胞。分离的精、卵细胞用电融合介导尝试了体外诱导融合。在合适的渗透压(6%甘露醇)和合适的氯化钙(0.04%CaCl2·2H2O)溶液中,用交流电场为30~35V,10~25s使精、卵细胞排队;用直流电场400~600V,45~50μs的脉冲穿孔条件可诱导30%的精、卵细胞融合和70%以上的卵细胞之间的融合。尝试了人工合子的单细胞培养但未获成功。诱导蓝猪耳精、卵细胞融合的条件与玉米和水稻不同。  相似文献   

2.
蓝猪耳精细胞的分离及两个精细胞群体的收集   总被引:4,自引:1,他引:3  
蓝猪耳是二细胞型花粉,生殖细胞在花粉管中分裂形成两个精细胞。用体内-体外技术培养出花粉管后,将其置于爆破液中即可释放出花粉管内含物,其中包括两个精细胞和营养细胞。在显微镜下两个精细胞具二型性:体积较大的精细胞与花粉管的营养核相连,体积较小的精细胞只与大精细胞连接。两个精细胞之间的连接比较结实,需用微量酶液将两个精细胞分开。用显微操作仪就可分别挑选出两个精细胞群体,分别有上百个细胞。蓝猪耳精细胞的成功分离为利用蓝猪耳开展离体受精研究打下了良好的基础。这种单一纯化的精细胞群体的获得为用分子生物学方法区分两个精细胞的特异基因和蛋白质创造了条件。  相似文献   

3.
以杉木(Cunninghamialanceolata(Lamb.)Hook.)传粉后的胚珠为材料,分离获得了生活的雌配子和雄配子。当花粉管进入雌配子体组织后,在颈卵器上方形成膨大的精原细胞或成对的精细胞。解剖出的精细胞呈FDA正反应,荧光增白剂染色表明精细胞具有细胞壁。雌配子体在酶液作用下可同时释放出多个卵细胞和精细胞。游离出的卵细胞呈FDA正反应,近圆形,内含1~2个大液泡。用PEG方法诱导卵细胞与卵细胞,卵细胞与精细胞的融合,只获得了相互粘连的两个原生质体。  相似文献   

4.
黄花木本曼陀罗卵细胞分离(简报)   总被引:1,自引:0,他引:1  
采用分离的精、卵细胞体外融合并诱导人工合子长成植株的离体受精方法可在没有其他组织影响的单细胞水平上探索受精事件的发生过程.为研究高等植物的受精机理、探索配子识别和合子激活等问题提供有效手段。分离的卵细胞不仅可以用来开展离体受精研究.也提供了用分子生物学方法研究被子植物卵细胞发育和合子发育机理的实验基础.  相似文献   

5.
蓝猪耳卵细胞和合子的分离   总被引:9,自引:0,他引:9  
蓝猪耳(Torenia fournieri)胚囊部分裸露出胚珠,在光学显微镜下能清楚观察到卵细胞和助细胞的形态结构.用解剖和酶解-解剖两种方法都能分离出生活卵细胞.用前种方法机械分离出的卵细胞数量较少(5%),但避免了酶对配子识别研究的干扰.在后种方法中加入0.1%纤维素酶和0.1%果胶酶既能使分离更加容易操作,又对卵细胞没有致命伤害,能在短时间内分离出较多的卵细胞(18%).用酶解-解剖方法也可分离出授粉14 h后的合子细胞.  相似文献   

6.
将大葱(Allium fistulosum)胚珠置于酶液中30分钟可将其外珠被去掉。可清楚地看到由内珠被包裹的胚珠中胚囊的轮廓。将胚珠转移至不含酶的相同溶液中,用解剖针从胚珠中部切割,然后挤压胚珠的珠孔部位,卵器细胞从胚珠的切口处逸出。再用显微操作仪将卵细胞和2个助细胞分开,达到葱卵细胞分离的目的。酶对分离卵细胞具有重要的作用,经0.2%果胶酶Y23、0.8%果胶酶、0.8%纤维素酶和0.5%半纤维素酶的处理,可在2小时内从30个胚珠中分离出18个卵细胞。随着胚囊的发育,2个助细胞的体积出现明显差异。生活的葱卵细胞的成功分离,为建立葱离体受精体系创造了条件。  相似文献   

7.
蓝猪耳(Torenia fournieri L.)胚囊半裸露,在光学显微镜下能清楚观察到卵细胞、助细胞及部分中央细胞的形态结构,有助于原位观察卵细胞在受精前后的变化状态,被认为是研究被子植物体内受精机理的一种模式植物。综述了蓝猪耳的受精机理:花粉管定向进入胚囊的方式与机理、钙在受精过程中的作用、受精前后胚囊细胞骨架的动态变化。简要介绍了离体受精技术在蓝猪耳受精生物学中的发展应用。根据前人对蓝猪耳的研究成果并结合我们的研究,指出蓝猪耳在受精生物学中的应用,特别是借助离体受精技术平台,将具有更大的研究前景。  相似文献   

8.
采用显微分光光度法测定了烟草(Nieotiana tabacum)精细胞和卵细胞的DNA含量。烟草是二胞花粉,花粉萌发后生殖细胞在花粉管中分裂形成精细胞。授粉后45h花粉管到达子房,在花粉管内的精细胞DNA含量为1C。当花粉管在退化助细胞中破裂,释放出的两个精细胞开始合成DNA。在与卵细胞融合前,两个精细胞DNA含量接近2C。随着精细胞的到达及合成DNA,卵细胞也开始合成DNA,融合前的卵细胞DNA含量也接近2C。精、卵细胞融合后,合子DNA含量为4C。烟草雌、雄配子是在细胞周期的G2期发生融合,属于G2型。  相似文献   

9.
高等植物离体受精研究进展   总被引:12,自引:1,他引:11  
高等植物的卵细胞深藏在子房内的胚珠体细胞组织中,形成了对高等植物受精过程研究的技术障碍。以前采用超微结构观察研究受精过程已取得了一定的结果,但用固定切片技术研究受精机理需将卵细胞杀死,并且不能进行定点追踪观察。将高等植物的精、卵细胞分离出来在体外诱导其融合的离体受精技术可在很大程度上克服这些技术障碍,对雌、雄配子的识别和融合,合子开始胚胎发生等一系列的受精和胚胎发生机理进行研究。分离的雌、雄配子及合子使应用分子生物学方法研究这些细胞的结构和功能成为可能。将合子的二倍性和胚胎发生特性与外源DNA转入技术结合起来可使转基因植物研究的后期工作简单化。另外,异种植物离体精、卵细胞融合和杂种合子的培养也是进行远缘杂交的一条有潜力的途径。  相似文献   

10.
用两个解剖针挤压胡萝卜花粉使其破裂释放出精细胞。用酶解-解剖方法分离胡萝卜胚囊中的卵细胞、助细胞和中央细胞。胡萝卜胚珠先在酶液中酶解40~50min,然后将其转移到不含酶的分离液中用解剖针解剖胚珠。将胚珠的合点端切破,轻轻挤压胚珠的珠孔,卵细胞、助细胞和中央细胞即可逸出。在最佳条件下,20min可从20个胚珠中分离出5个卵细胞。对分离胚囊细胞的渗透压和酶液成分进行了筛选。分离出的卵细胞用显微操作仪收集。胡萝卜精、卵细胞的成功分离为在双子叶植物中进行离体受精探索创造了条件。  相似文献   

11.
We have extended the observations of previous transmission electron microscopy studies of sperm-egg fusion to include those of freeze-fracture replicas showing sperm-egg interactions before, during, and following sperm head fusion with the egg membrane. Hamster eggs were incubated with hamster sperm under polyspermic conditions and were observed after a period of 5-30 minutes. After fixation, the eggs and sperm were exposed to filipin, which binds beta-OH-sterols to form visible complexes in freeze-fracture replicas. Filipin can act as a marker for egg plasma membrane wherein it is abundant, while filipin is relatively scarce in the acrosome-reacted hamster sperm membrane, found only in the plasma membrane of the equatorial segment. The earliest sperm-egg interactions are observed between the egg microvilli and the perforatorium and the equatorial segment of the sperm, and the initial fusion between egg and sperm occurs in the vicinity of the equatorial segment. At later stages of fusion involving the postacrosomal segment, a clear line of demarcation is observed between the filipin-rich egg membrane and the filipin-poor sperm postacrosomal segment, suggesting that filipin binding lipids from the egg intercalate into the sperm membrane following membrane fusion. The anterior segment of the sperm does not fuse with the egg but is instead incorporated into a cytoplasmic vesicle derived from both sperm and egg membranes. In this latter step, filipin-sterol complexes are not found in sperm-derived membranes suggesting that there may be barriers to the movement of filipin binding lipids from the egg into these sperm membranes.  相似文献   

12.
The electrofusion-mediated fertilization of single egg cells of wheat with isolated individually selected wheat sperm cells was successfully carried out for the first time. On average the fusion frequency was 30% but under optimal conditions it was possible to reach as much as 55%. Two days after electric fusion 60% of the fusion products started to divide, 88.5% of them forming multicellular structures and in a few cases microcalluses. The culture of single unfertilized egg cells with or without the application of AC field and electric pulses induced no cell division. The egg cells and fusion products were cultured in a maize feeder-cell system.Abbreviations AC Alternating current - DC Direct current - DAPI 4,6 diamino-2-phenylindole  相似文献   

13.
Analysis of the role of egg integrins in sperm-egg binding and fusion   总被引:2,自引:0,他引:2  
Sperm-egg fusion is believed to be mediated via specific molecular interactions. Integrin alpha6beta1 is a strong candidate for a sperm receptor on the egg plasma membrane. However, the ability of the egg integrin alpha6beta1 to interact with molecules on intact sperm has not yet been proven. In this report, possible involvement of integrin alpha6beta1 in sperm-egg interactions was examined by biochemical and immunocytochemical analyses. To identify egg molecules that specifically interact with sperm, we first incubated sperm with biotin-labeled egg surface proteins. Under this condition, solubilized proteins from eggs inhibited sperm-egg fusion. Western blot analysis under reducing conditions indicated that a major-labeled band of 135 kDa bound to sperm. An immunodepletion experiment using the anti-integrin alpha6 antibody GoH3 indicated that the 135 kDa egg surface molecule that bound to sperm was the integrin alpha6 subunit. To investigate the potential involvement of integrin alpha6beta1 in sperm-egg fusion, we next examined the localization of integrin alpha6 and beta1 subunits before and after fertilization by confocal laser microscopy. At an early stage of sperm-egg fusion, the integrin alpha6 and beta1 subunits were accumulated at the sperm binding site. The frequency of cluster formation was closely related to that of sperm-egg fusion, indicating that integrin receptors are accumulated by sperm destined for fusion. Taken together, these results strongly suggest that the integrin alpha6beta1 is involved in sperm-egg binding leading to fusion via direct association of the integrin alpha6 with sperm.  相似文献   

14.
These experiments were designed to test the effects of an electrofusion and an electroporation pulse on bovine sperm-hamster egg development. In experiment 1, single motile sperm were injected into the perivitelline space of each egg. A 4,500 V/cm, 30 microseconds fusion pulse (FP) was applied while sperm-egg membrane contact was maintained. It was observed that single motile sperm were rendered immotile immediately after FP application whereas nonpulsed single motile sperm remained motile for up to 36 h postinjection. In addition, both motile and sonicated spermatozoa were injected directly into the ooplasm prior to receiving an FP to determine whether the FP was detrimental to sperm viability. In experiment 2, to induce the acrosome reaction, an 1,150 V/cm electroporation pulse was applied to washed bovine sperm suspended in TALP medium containing 5 mM Ca2+. Treated and nontreated sperm were coincubated with zona-free hamster ova, and sperm-pentrating ability was measured. Results from experiment 1 indicate that FP failed to induce sperm-egg fusion (0/69). FP did not, however, inhibit decondensation or pronuclear formation of sperm injected into hamster egg ooplasm. Single motile sperm injected into the ooplasm resulted in development of both pulsed (19/28) and nonpulsed (21/28) groups. Sonicated tail-free sperm heads injected into the ooplasm resulted in no detectable difference between treated (18/30) and nontreated (19/30) groups. In experiment 2, treatment of sperm with electroporation pulse +5 mM Ca2+ increased zona-free hamster ova penetration scores over nontreated sperm within bulls (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of phosphatidyinositol-specific phospholipase C (PI-PLC) on mouse sperm-egg interaction was investigated in this study to determine if glycosyl-phosphatidylinositol (GPI)-anchored proteins are involved in mammalian fertilization. When both sperm and zona-intact oocytes were pretreated with a highly purified preparation of PI-PLC and coincubated, there was no significant effect on sperm-zona pellucida binding; however, fertilization was reduced from 59.6% (control group) to 2.8% (treatment group). A similar reduction in fertilization rates was found when zona-intact oocytes were treated with PI-PLC and washed prior to incubation with untreated sperm. The effect of PI-PLC on sperm binding and fusion with zona-free oocytes was then investigated. Treatment of sperm with PI-PLC had no significant effect on sperm-egg binding or fusion. However, treatment of eggs with PI-PLC significantly reduced sperm-egg binding and fusion from 6.2 bound and 2.1 fused sperm per egg in the control group to 2.1 bound and 0.02 fused sperm per egg in the treatment group. This decrease in sperm-egg binding and fusion depended on the dose of PI-PLC employed, with a maximal inhibitory effect on binding and fusion at 5 and 1 U/ml, respectively. PI-PLC-treated oocytes could be artificially activated by calcium ionophore, demonstrating that the oocytes were functionally viable following treatment. Furthermore, treatment of oocytes with PI-PLC did not reduce the immunoreactivity of the non-GPI-anchored egg surface integrin, alpha6beta1. Taken together, these observations support the hypothesis that PI-PLC affects fertilization by specifically releasing GPI-anchored proteins from the oolemma. In order to identify the oolemmal GPI-anchored proteins involved in fertilization, egg surface proteins were labeled with sulfo-NHS biotin, treated with PI-PLC, and analyzed by two-dimensional gel electrophoresis followed by avidin blotting. A prominent high-molecular-weight protein cluster (approximately 70 kDa, pI 5) and a lower molecular weight (approximately 35-45 kDa, pI 5.5) protein cluster were released from the oolemmal surface as a result of PI-PLC treatment. It is likely that these GPI-anchored egg surface proteins are required for sperm-egg binding and fusion.  相似文献   

16.
高等植物的倾向受精是一个非常吸引人的研究课题,目前对其机理还不清楚。要想探索高等植物倾向受精现象,前提之一是要分离出一定数量的两个精细胞群体作为分子生物学研究方法的材料。以前的研究表明, 烟草(Nicotiana tabacum L.)花粉管中的两个精细胞体积差异明显。这种异型性的精细胞可能与倾向受精有关。烟草是二胞型花粉,生殖细胞只在体内生长的花粉管中才分裂形成两个精细胞。用体内/体外技术培养出花粉管后,爆破花粉管即可释放出花粉管内含物,其中包括两个精细胞。用微量酶液可使两个精细胞分开。然后用显微操作器可挑选出两个大小不同、数量上千的精细胞群体。这种单一纯化的精细胞群体为用分子生物学方法区分两个精细胞的DNA和蛋白质差异打下基础。本研究是高等植物的第二例、二胞花粉植物中的第一例分离两个特定精细胞群体的尝试,为构建烟草两个精细胞的cDNA文库创造了条件。  相似文献   

17.
The penetration of the sperm into the egg, and the movements of the male and female pronuclei were followed from sperm attachment through pronuclear fusion, using time-lapse video microscopy of gametes and zygotes of the sea urchin Lytechinus variegatus (23° C). The pronuclei move in four stages: I. Sperm Entry Phase, following sperm-egg fusion and a rapid radiating surface contraction (5.9 ± 1.3 μm/second) when egg microvilli engulf the sperm head, midpiece, and tail to form the fertilization cone and the sperm tail beats in the egg cytoplasm; II. Formation of the Sperm Aster, which pushes the male pronucleus centripetally at a rate of 4.9 ± 1.7 μm/minute starting 4.4 ± 0.5 minutes after sperm-egg fusion, as the male pronucleus undergoes chromatin decondensation; III. Movement of the Female Pronucleus, the greatest and fastest of the pronuclear motions at a rate of 14.6 ± 3.5 μm/minute at 6.8 ± 1.2 minute after sperm-egg fusion, which establishes the contact between the pronuclei; and IV. Centration of the Pronuclei to the egg center at a rate of 2.6 ± 0.9 μm/minute by 14.1 ± 2.6 minutes after sperm-egg fusion. Pronuclear fusion typically occurs after stage IV and proceeds rapidly starting 14.7 ± 3.6 minutes after sperm-egg fusion with the male pronucleus coalescing into the female pronucleus at a rate of 14.2 ± 2.6 μm/minute.  相似文献   

18.
The surface topography of the rat egg was examined during fertilization in vitro and in vivo. Using phase optics, 348 in vitro fertilized and 50 in vivo fertilized eggs were continuously monitored throughout the 7-hour period of sperm incorporation. A myriad of different surface configurations were seen, with each egg exhibiting one or more of the following changes. A small number of eggs (4–6%) formed surface elevations over the sperm head after its detachment from the flagellum, 15–30 min after sperm-egg fusion; 1 to 1.5 hr after fusion, 40–50% of the eggs produced the so-called incorporation cone, a prominent surface elevation over the decondensing sperm nucleus. The vast majority of eggs (74–82%) formed surface elevations over the proximal tip of the flagellum 2–3 hr after sperm-egg fusion. These had no association with the decondensing sperm nucleus. A few eggs (11–12%) exhibited multiple protrusions that were distributed randomly about the egg surface, whereas 14–20% did not manifest any surface elevations and remained spherical throughout the sperm incorporation period. Regardless of the type of surface change, all of the eggs resumed a spherical shape by the time sperm incorporation was complete. These observations are in contrast to the conclusions by previous authors that formation of the so-called incorporation cone over the decondensing sperm nucleus is a ubiquitous event.  相似文献   

19.
Protein DE (32 kDa) associates with sperm during epididymal maturation and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. In the present work we investigated the participation of DE in two mechanisms probably involved in egg activation: the ability of DE to trigger activation by its interaction with the binding sites on the egg surface (receptor model) and its ability to regulate intracellular calcium channels (sperm factor model). The incubation of eggs with DE did not promote activation parameters such as calcium oscillations or meiosis resumption. Secondly, microinjection of DE into eggs was ineffective in either eliciting calcium release or modifying oscillations induced by an activating sperm extract. Together, these results argue against the participation of DE in egg activation, restricting the activity of this protein and its egg binding sites to the sperm-egg fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号