首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
囊泡运输是真核细胞内细胞器间物质交流的重要手段,主要包括出芽、转运、拴系及膜融合四个环节.拴系因子调控运输囊泡与靶膜的初始接触,建立两者间的连接,并能够促进SNARE介导的膜融合过程.Exocyst是一个保守的八亚基拴系复合体,主要在胞吐过程中介导囊泡与细胞质膜的拴系过程.本文主要介绍exocyst复合体的结构和组装机...  相似文献   

2.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

3.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

4.
真核细胞中的物质交流是通过膜泡运输完成的。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留、锚定和膜融合过程。其中,拴留过程是运输囊泡和靶膜最初的接触。在此过程中,有许多因子参与调控,如拴留因子、小GTPase、SNARE蛋白等。GARP(golgi-associated retrograde protein)复合体是内涵体到高尔基体反面网状结构(TGN)逆行运输过程中的拴留因子。目前,关于GARP复合体的组成和功能已经有了一定的了解,本文将对GARP复合体的最新研究进展进行概述。  相似文献   

5.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

6.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

7.
细胞内各个细胞器之间通过囊泡的膜转运是真核细胞存在的基本。Rab蛋白确保了转运蛋白被运输至正确的目的地。Rab蛋白是小GTP酶中的一大家族,它通过募集其效应物蛋白,其中包括接头蛋白,栓系因子,激酶,磷酸酶以及动力蛋白等,调控了细胞膜的选取,囊泡出芽,去包被,转运以及膜融合等过程。本文主要从Rab蛋白循环着手,依次论述了Rab蛋白在囊泡出芽,去包被,转运和膜融合等过程中起到的作用,从而使读者对Rab蛋白能有一个更加系统的了解。  相似文献   

8.
细胞合成的分泌蛋白需运输到特定位置才可发挥重要的生物学功能,而此过程需要细胞囊泡介导完成。合成的蛋白首先进入细胞器,经过加工组装后通过出芽方式形成囊泡,然后运输到特定位置再和靶膜特异性融合而实现正确定位。囊泡运输生化机制是由鲁斯曼等科学家经过30多年研究得以阐明,拓展了对生命问题理解的同时还有望临床上得到广泛应用。  相似文献   

9.
细胞内pH和囊泡运输是影响细胞功能的重要影响因子,也是决定细胞是否死亡的重要因素。植物Na^+,K^+/H^+反向转运体是位于细胞膜结构上的跨膜反向转运蛋白,介导Na^+、K^+与质子(H^+)的跨膜反向转运,影响胞内pH的动态平衡。研究表明,NHX缺失造成细胞pH失衡的同时,将影响囊泡运输,从而对生长发育产生不利影响。主要对植物NHX在pH调节、囊泡运输中的功能进展进行了概述,并对其关系进行探讨。  相似文献   

10.
吴安平  庆宏  全贞贞 《遗传》2021,(1):16-29
细胞内膜囊泡运输是一个复杂的通路网络,Rab GTPases是膜囊泡运输的主要调节剂,通常被认为是细胞内吞和分泌系统中各种细胞器和囊泡的特异性标记和识别物。与Rab蛋白相关的轴突运输、内体运输发生障碍是造成神经退行性疾病的重要原因之一。本文主要介绍了Rab蛋白在多种神经退行性疾病病理机制中的作用机理与调控机制,同时讨论了线粒体和胶质细胞功能异常与Rab蛋白之间的关联。深入探究Rab蛋白的作用机制对人类神经性疾病的早期诊断和治疗具有潜在的指导意义。  相似文献   

11.
The specificity of intracellular vesicle transport is mediated in part by tethering factors that attach the vesicle to the destination organelle prior to fusion. We have identified a protein, Dor1p, that is involved in vesicle targeting to the yeast Golgi apparatus and found it to be associated with seven further proteins. Identification of these revealed that they include Sec34p and Sec35p, the two known components of the Sec34/35 complex previously proposed to tether vesicles to the Golgi. Of the six previously uncharacterized components, four have homologs in higher eukaryotes, including a subunit of a mammalian Golgi transport complex. Furthermore, several of the proteins show distant homology to components of two other putative tethering complexes, the exocyst and the Vps52/53/54 complex, revealing that tethering factors involved in different membrane traffic steps are structurally related.  相似文献   

12.
Vesicle-mediated transport is a process carried out by virtually every cell and is required for the proper targeting and secretion of proteins. As such, there are numerous players involved to ensure that the proteins are properly localized. Overall, transport requires vesicle budding, recognition of the vesicle by the target membrane and fusion of the vesicle with the target membrane resulting in delivery of its contents. The initial interaction between the vesicle and the target membrane has been referred to as tethering. Because this is the first contact between the two membranes, tethering is critical to ensuring that specificity is achieved. It is therefore not surprising that there are numerous 'tethering factors' involved ranging from multisubunit complexes, coiled-coil proteins and Rab guanosine triphosphatases. Of the multisubunit tethering complexes, one of the best studied at the molecular level is the evolutionarily conserved TRAPP complex. There are two forms of this complex: TRAPP I and TRAPP II. In yeast, these complexes function in a number of processes including endoplasmic reticulum-to-Golgi transport (TRAPP I) and an ill-defined step at the trans Golgi (TRAPP II). Because the complex was first reported in 1998 (1), there has been a decade of studies that have clarified some aspects of its function but have also raised further questions. In this review, we will discuss recent advances in our understanding of yeast and mammalian TRAPP at the structural and functional levels and its role in disease while trying to resolve some apparent discrepancies and highlighting areas for future study.  相似文献   

13.
Abstract

Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

14.
Role of vesicle tethering factors in the ER-Golgi membrane traffic   总被引:1,自引:0,他引:1  
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.  相似文献   

15.
The superfamily of small, monomeric GTP-binding proteins, in Arabidopsis thaliana comprising 93 members, is classified into four families: Arf/Sar, Rab, Rop/Rac, and Ran families. All monomeric G proteins function as molecular switches that are activated by GTP and inactivated by the hydrolysis of GTP to GDP. GTP/GDP cycling is controlled by three classes of regulatory protein: guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Proteins of Arf family are primarily involved in regulation of membrane traffic and organization of the cytoskeleton. Arf1/Sar1 proteins regulate the formation of vesicle coat at different steps in the exocytic and endocytic pathways. Rab GTPases are regulators of vesicular transport. They are involved in vesicle formation, recruitment of cytoskeletal motor proteins, and in vesicle tethering and fusion. Rop proteins serve as key regulators of cytoskeletal reorganization in response to extracellular signals. Several data have also shown that Rop proteins play additional roles in membrane trafficking and regulation of enzymes activity. Ran proteins are involved in nucleocytoplasmic transport.  相似文献   

16.
Transport of cargo to, through and from the Golgi complex is mediated by vesicular carriers and transient tubular connections. In this review, we describe vesicle tethering events with the understanding that similar events occur during transport via larger structures. Tethering factors can be generally divided into a group of coiled-coil proteins and a group of multi-subunit complexes. Current evidence suggests that these factors function in a variety of membrane-membrane tethering events at the Golgi complex, interact with SNARE molecules, and are regulated by small GTPases of the Rab and Arl families.  相似文献   

17.
Endocytic trafficking is a highly organized process regulated by a network of proteins, including the Rab family of small GTP-binding proteins and the C-terminal EHDs (Eps15 homology-domain-containing proteins). Central roles for Rab proteins have been described in vesicle budding, delivery, tethering and fusion, whereas little is known about the functions of EHDs in membrane transport. Common effectors for these two protein families have been identified, and they facilitate regulation of sequential steps in transport. By comparing and contrasting key aspects in their modes of function, we shall promote a better understanding of how Rab proteins and EHDs regulate endocytic trafficking.  相似文献   

18.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号