首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear factor I (NFI) is a HeLa sequence-specific DNA-binding protein that is required for initiation of adenovirus (Ad) DNA replication and may be involved in the expression of several cellular genes. The interaction between NFI and its binding site on the Ad2 origin has been studied. Methylation interference and protection, u.v. irradiation of 5-BrdU substituted DNA and ethylation interference revealed major groove contacts with G and T, and phosphate backbone contacts. Computer stereographics show that the contacts are located in two blocks showing dyad symmetry to each other and 22 out of 23 contacts are accessible from one side of the helix. Inversion of the NFI binding site did not change the NFI dependent stimulation of Ad2 DNA replication in a reconstituted system. All data are compatible with NFI binding as a dimer at one side of the DNA helix.  相似文献   

2.
H Komori  F Matsunaga  Y Higuchi  M Ishiai  C Wada    K Miki 《The EMBO journal》1999,18(17):4597-4607
The initiator protein (RepE) of F factor, a plasmid involved in sexual conjugation in Escherichia coli, has dual functions during the initiation of DNA replication which are determined by whether it exists as a dimer or as a monomer. A RepE monomer functions as a replication initiator, but a RepE dimer functions as an autogenous repressor. We have solved the crystal structure of the RepE monomer bound to an iteron DNA sequence of the replication origin of plasmid F. The RepE monomer consists of topologically similar N- and C-terminal domains related to each other by internal pseudo 2-fold symmetry, despite the lack of amino acid similarities between the domains. Both domains bind to the two major grooves of the iteron (19 bp) with different binding affinities. The C-terminal domain plays the leading role in this binding, while the N-terminal domain has an additional role in RepE dimerization. The structure also suggests that superhelical DNA induced at the origin of plasmid F by four RepEs and one HU dimer has an essential role in the initiation of DNA replication.  相似文献   

3.
M Schnos  K Zahn  R B Inman  F R Blattner 《Cell》1988,52(3):385-395
The interaction of the lambda phage initiator protein, O, with the lambda origin sequence, ori, has been investigated. Binding of O, or its amino-terminal fragment, causes a major structural change within a 60 bp AT-rich region just to the right of the O-binding site. ATP or other molecular energy sources are not required. The modification, as assayed by nuclease sensitivity, is reduced when certain ori mutant sequences, which bind O but fail to replicate, are substituted for the wild-type sequence. The modification of DNA structure caused by the interaction of O is absolutely dependent on the presence of superhelical tension at the lambda origin sequence, and has several properties consistent with a strand separation reaction. We propose that this modification is a fundamental prepriming event that is the first stage in initiation of bidirectional replication in lambda after O binding.  相似文献   

4.
The EBNA1 protein of Epstein-Barr virus (EBV) activates DNA replication by binding to multiple copies of its 18-bp recognition sequence present in the Epstein-Barr virus latent origin of DNA replication, oriP. Using electrophoretic mobility shift assays, we have localized the minimal DNA binding domain of EBNA1 to between amino acids 470 and 607. We have also demonstrated that EBNA1 assembles cooperatively on the dyad symmetry subelement of oriP and that this cooperative interaction is mediated by residues within the minimal DNA binding and dimerization domain of EBNA1.  相似文献   

5.
Discerning the interactions between initiator protein and the origin of replication should provide insights into the mechanism of DNA replication initiation. In the gamma origin of plasmid R6K, the Rep protein, pi, is distinctive in that it can bind the seven 22-bp iterons in two forms; pi monomers activate replication, whereas pi dimers act as inhibitors. In this work, we used wild type and variants of the pi protein with altered monomer/dimer ratios to study iteron/pi interactions. High resolution contact mapping was conducted using multiple techniques (missing base contact probing, methylation protection, base modification, and hydroxyl radical footprinting), and the electrophoretic separation of nucleoprotein complexes allowed us to discriminate between contact patterns produced by pi monomers and dimers. We also isolated iteron mutants that affected the binding of pi monomers (only) or both monomers and dimers. The mutational studies and footprinting analyses revealed that, when binding DNA, pi monomers interact with nucleotides spanning the entire length of the iteron. In contrast, pi dimers interact with only the left half of the iteron; however, the retained interactions are strikingly similar to those seen with monomers. These results support a model in which Rep protein dimerization disturbs one of two DNA binding domains important for monomer/iteron interaction; the dimer/iteron interaction utilizes only one DNA binding domain.  相似文献   

6.
The structure of the gene 5 DNA unwinding protein from bacteriophage fd has been determined by X-ray diffraction analysis of single crystals to 2.3 Å resolution using six isomorphous heavy-atom derivatives. The essentially globular monomer appears to consist of three secondary structural elements, a radically twisted three-stranded antiparallel β sheet and two distinct anti-parallel β loops, which are joined by short segments of extended polypeptide chain. The molecule contains no α-helix. A long groove, or arch, 30 Å in length is formed by the underside of the twisted β sheet and one of the two β ribbons. We believe this groove to be the DNA binding region, and this is supported by the assignment of residues on its surface implicated in binding by solution studies. These residues include several aromatic amino acids which may intercalate or stack upon the bases of the DNA. Two monomers are maintained as a dimer by the very close interaction of symmetry related β ribbons about the molecular dyad. About six residues at the amino and carboxyl terminus are in extended conformation and both seem to exhibit some degree of disorder. The amimo-terminal methionine is the locus for binding the platinum heavy-atom derivatives and tyrosine 26 for attachment of the major iodine substituent.  相似文献   

7.
The replication origin of the broad host-range plasmid RSF1010 contains 3.5 copies of a 20mer iteron sequence that bind specifically to the plasmid-encoded initiator, RepC. Here we demonstrated that even a single iteron was bent upon binding of RepC. Moreover, the bending angle seems to become larger along with the increment of the number of iterons. In a mutational analysis of the iteron sequence, we isolated seven kinds of base-substitution mutants of iterons, and estimated the replication activity of these mutants in vivo. We found that each of the subsections in the 20mer iteron sequence made a distinct contribution to the initiation of RSF1010 DNA replication. With the binding assay of RepC and mutated iterons in vitro, we found that the formation of a productive RepC-iteron complex was required for the initiation of plasmid DNA replication.  相似文献   

8.
The excisionase (Xis) protein from bacteriophage lambda is the best characterized member of a large family of recombination directionality factors that control integrase-mediated DNA rearrangements. It triggers phage excision by cooperatively binding to sites X1 and X2 within the phage, bending DNA significantly and recruiting the phage-encoded integrase (Int) protein to site P2. We have determined the co-crystal structure of Xis with its X2 DNA-binding site at 1.7A resolution. Xis forms a unique winged-helix motif that interacts with the major and minor grooves of its binding site using an alpha-helix and an ordered beta-hairpin (wing), respectively. Recognition is achieved through an elaborate water-mediated hydrogen-bonding network at the major groove interface, while the preformed hairpin forms largely non-specific interactions with the minor groove. The structure of the complex provides insights into how Xis recruits Int cooperatively, and suggests a plausible mechanism by which it may distort longer DNA fragments significantly. It reveals a surface on the protein that is likely to mediate Xis-Xis interactions required for its cooperative binding to DNA.  相似文献   

9.
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands.  相似文献   

10.
The bacteriophage lambda O protein is needed for initiation of lambda DNA replication. Several lines of evidence suggest that initiation requires that this protein interacts with a specific sequence called ori (for origin) in lambda DNA. We have purified this protein to near homogeneity and studied the protection against nuclease cleavage of the origin DNA sequences. Our data demonstrate that the O protein binds within an interval of about 95 base pairs (bp), which contains four tandemly arranged 19bp repeating sequences, ATCCCTCAAAACGA (G)GG GAT(A). At a low concentration of O protein, the inner two repeats are primarily covered, while binding to the outer two repeats requires a high concentration of O protein. From the molecular size of O protein (32,000 daltons), and the internal symmetry in each 19bp repeat, we inferred that the O protein may bind in dimeric form, and that the 95bp region may be filled only when four such dimers have bound. This interaction is discussed in connection with the "activation" of the ori by O protein leading to initiation of DNA synthesis.  相似文献   

11.
W. F. Wu  S. Christiansen    M. Feiss 《Genetics》1988,119(3):477-484
The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNul, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between lambda and the related phage 21. lambda and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, lambda and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A lambda-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, lambda-21 hybrid 67, is characterized. lambda-21 hybrid 67 is the result of a crossover between lambda and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosB phi 21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is lambda DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Binding of the O protein of phage lambda to the replication origin (ori lambda) results in the formation of an organized nucleoprotein structure termed the O-some. The O-some serves to localize and initiate a six-protein sequential reaction that provides for localized unwinding of the origin region, the critical prepriming step for precise initiation of DNA replication. By the use of electron microscopy of gold-tagged antibody complexes, we have defined four stages of protein association and dissociation reactions that are involved in the prepriming pathway. First, as defined previously, O protein binds to multiple DNA sites and self-associates to form the O-some. Second, lambda P and host DnaB proteins add to the O-some to generate an O.P.DnaB.ori lambda complex. Addition of the DnaK and DnaJ proteins yields a third stage complex containing DnaK, DnaJ, O, P, and DnaB. With the addition of ATP and single-strand binding protein (SSB), the P protein is largely removed, and the DnaB acts as a helicase to generate locally unwound, SSB-coated single strand DNA. Thus, the initiation of lambda DNA replication requires ordered assembly and partial disassembly of specialized nucleoprotein structures. The disassembly activity of DnaK and DnaJ may be their general role in the heat shock response.  相似文献   

13.
The replication terminator protein (RTP) of Bacillus subtilis impedes replication fork movement in a polar mode upon binding as two interacting dimers to each of the replication termini. The mode of interaction of RTP with the terminus DNA is of considerable mechanistic significance because the DNA-protein complex not only localizes the helicase-blocking activity to the terminus, but also generates functional asymmetry from structurally symmetric protein dimers. The functional asymmetry is manifested in the polar impedance of replication fork movement. Although the crystal structure of the apoprotein has been solved, hitherto there was no direct evidence as to which parts of RTP were in contact with the replication terminus. Here we have used a variety of approaches, including saturation mutagenesis, genetic selection for DNA-binding mutants, photo cross-linking, biochemical and functional characterizations of the mutant proteins, and X-ray crystallography, to identify the regions of RTP that are either in direct contact with or are located within 11 angstroms of the replication terminus. The data show that the unstructured N-terminal arm, the alpha3 helix and the beta2 strand are involved in DNA binding. The mapping of amino acids of RTP in contact with DNA, confirms a 'winged helix' DNA-binding motif.  相似文献   

14.
An Escherichia coli mutant, ts121, was isolated following random insertional mutagenesis using phage lambda Mu transposition. The mutant phenotype includes inability to form colonies at temperatures above 38 degrees C and inability to propagate phage lambda at all temperatures. A lambda i434 cI- (ts121)+ transducing phage was isolated on the basis of its ability to form plaques on ts121 mutant bacteria. Using this transducing phage, it was shown through complementation and protein analyses, that the ts121 mutation is located in the dnaB gene. The exact insertion event was identified by polymerase chain reaction amplification of the DNA sequences containing the insertion junction. The mutational insertion event in ts121 was mapped precisely between base pairs 1514 and 1515 of the dnaB gene. This result predicts that the mutant dnaB protein has lost its six terminal amino acids. The reading frame shifts into Mu-specific DNA sequences resulting in an additional 20 amino acid residues. The E. coli wild type dnaB protein participates in host replication and interacts with lambda P protein to initiate phage lambda DNA replication. Our results demonstrate that the extreme carboxyl end of the dnaB protein is required for productive interaction with the lambda P replication protein at all temperatures, and is important for dnaB function at temperatures above 38 degrees C. Cold-sensitive extragenic suppressors of the ts121 mutation were isolated on the basis of their ability to restore colony formation at 42 degrees C. One of these extragenic suppressors was mapped at 54 min on the E. coli genetic map and localized to the suhB gene, whose product may affect the expression of a number of genes at the translational level.  相似文献   

15.
Replication initiation depends on origin recognition, helicase, and primase activities. In phage P4, a second DNA region, the cis replication region (crr), is also required for replication initiation. The multifunctional alpha protein of phage P4, which is essential for DNA replication, combines the three aforementioned activities on a single polypeptide chain. Protein domains responsible for the activities were identified by mutagenesis. We show that mutations of residues G506 and K507 are defective in vivo in phage propagation and in unwinding of a forked helicase substrate. This finding indicates that the proposed P loop is essential for helicase activity. Truncations of gene product alpha (gp alpha) demonstrated that 142 residues of the C terminus are sufficient for specifically binding ori and crr DNA. The minimal binding domain retains gp alpha's ability to induce loop formation between ori and crr. In vitro and in vivo analysis of short C-terminal truncations indicate that the C terminus is needed for helicase activity as well as for specific DNA binding.  相似文献   

16.
The initiator of coliphage lambda DNA replication, lambda O protein, may be detected among other 35S-labeled phage and bacterial proteins by a method based on immunoprecipitation. This method makes it possible to study lambda O proteolytic degradation in lambda plasmid-harboring or lambda phage-infected cells; it avoids ultraviolet (u.v.)-irradiation of bacteria, used for depression of host protein synthesis, prior to lambda phage infection. We confirm the rapid decay of lambda O protein (half-time of 80 s), but we demonstrate the existence of a stable lambda O fraction. In the standard five minute pulse-chase experiments, 20% of synthesized lambda O is stable. The extension of the [35S]methionine pulse, possible in lambda plasmid-harboring cells, leads to a linear increase of this fraction, as if a part of the synthesized lambda O was constantly made resistant to proteolysis. Less than 5% of lambda O protein synthesized during one minute is transformed into a stable form. We presume that the stable lambda O is identical with lambda O present in the normal replication complex and thus protected from proteases. We cannot find any stable lambda O in Escherichia coli recA+ cells that were irradiated with u.v. light prior to lambda phage infection, but their recA- counterparts behave normally, suggesting that recA function interferes in the assembly of a normal replication complex in u.v.-irradiated bacteria. The stable lambda O found in lambda plasmid-harboring, amino acid-starved relA cells is responsible for the lambda O-dependent lambda plasmid replication that occurs in this system in the absence of lambda O synthesis. The existence of stable lambda O raises doubt concerning its role as the limiting initiator protein in the control of replication. Another significance of lambda O rapid degradation is proposed.  相似文献   

17.
A functional domain of bacteriophage lambda terminase for prohead binding   总被引:7,自引:0,他引:7  
Terminase is a multifunctional protein complex involved in DNA packaging during bacteriophage lambda assembly. Terminase is made of gpNul and gpA, the products of the phage lambda Nu1 and A genes. Early during DNA packaging terminase binds to lambda DNA to form a complex called complex I. Terminase is required for the binding of proheads by complex I to form a DNA: terminase: prohead complex known as complex II. Terminase remains associated with the DNA during encapsidation. The other known role for terminase in packaging is the production of staggered nicks in the DNA thereby generating the cohesive ends. Lambdoid phage 21 has cohesive ends identical to those of lambda. The head genes of lambda and 21 show partial sequence homology and are analogous in structure, function and position. The terminases of lambda and 21 are not interchangeable. At least two actions of terminase are involved in this specificity: (1) DNA binding; (2) prohead binding. The 1 and 2 genes at the left end of the 21 chromosome were identified as coding for the 21 terminase. gp1 and gp2 are analogous to gpNu1 and gpA, respectively. We have isolated a phage, lambda-21 hybrid 33, which is the product of a crossover between lambda and 21 within the terminase genes. Lambda-21 hybrid 33 DNA and terminase have phage 21 packaging specificity, as determined by complementation and helper packaging studies. The terminase of lambda-21 hybrid 33 requires lambda proheads for packaging. We have determined the position at which the crossover between lambda DNA and 21 DNA occurred to produce the hybrid phage. Lambda-21 hybrid 33 carries the phage 21 1 gene and a hybrid phage 2/A gene. Sequencing of lambda-21 hybrid 33 DNA shows that it encodes a protein that is homologous at the carboxy terminus with the 38 amino acids of the carboxy terminus of lambda gpA; the remainder of the protein is homologous to gp2. The results of these studies define a specificity domain for prohead binding at the carboxy terminus of gpA.  相似文献   

18.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

19.
Supercoiled DNA containing the replication origin of bacteriophage lambda can be replicated in vitro. This reaction requires purified lambda O and P replication proteins and a partially purified mixture of Escherichia coli proteins (Tsurimoto, T., and Matsubara, K. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7639-7643; Wold, M. S., Mallory, J.B., Roberts, J. D., LeBowitz, J. H., and McMacken, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6176-6180). The lambda origin region has four repeats of a 19-base pair sequence to which O protein binds. To the right of these sites on the lambda map is a 40-base pair region that is rich in adenine and thymine, followed by a 28-base pair palindromic sequence. To define more precisely the boundaries of the lambda origin, we cloned a 358-base pair piece of lambda DNA containing the origin region into M13mp8 in both orientations. In vitro replication of RF I DNAs prepared from cells infected with these two M13 ori lambda phage was dependent on lambda O and P proteins and a crude protein fraction from uninfected E. coli; with these conditions there was no replication of M13mp8 RF I DNA. We made deletions from the left and the right ends of the lambda origin DNA and determined the deletion end points by DNA sequencing. We have tested RF I DNAs prepared from cells infected with phage carrying ori lambda deletions for their ability to function as templates for O- and P-dependent replication in vitro. Our results show that lambda DNA between nucleotide positions 39072 and 39160 is required for efficient O- and P-dependent replication. This 89-base pair piece of DNA includes only two of the four 19-base pair O protein-binding sites (the two right-most) and the adjoining adenine- and thymine-rich region to the right of the O-binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号