首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The translocation of proteins into the endoplasmic reticulum, the mitochondrion, and the chloroplast has recently been shown to involve homologues of the highly conserved 70-kDa heat shock protein (HSP70) family. In this study, we have isolated and sequenced a full-length cDNA clone encoding a cognate 70-kDa heat shock protein of the spinach chloroplast envelope (SCE70). The cDNA insert is 2,535 base pairs long and codes for 653 amino acid residues of a protein with a predicted molecular mass of 71,731 daltons. The deduced amino acid sequence shows a high degree of homology with HSP70 proteins from other organisms. Southern genomic and RNA analyses reveal different hybridization patterns than that observed for a heat-inducible 70-kDa protein gene. The protein synthesized from the SCE70 cDNA insert co-migrates with a 70-kDa polypeptide of the chloroplast envelope following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis and import studies indicate that SCE70 is associated with the chloroplast outer envelope. The import data suggest that SCE70 is targeted to the envelope membrane via a pathway different from other plastidic precursors but similar to that recently reported for outer envelope proteins SOE1 and OM14.  相似文献   

2.
Binding of heat shock proteins to the avian progesterone receptor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The protein composition of the avian progesterone receptor was analyzed by immune isolation of receptor complexes and gel electrophoresis of the isolated proteins. Nonactivated cytosol receptor was isolated in association with the 90-kilodalton (kDa) heat shock protein, hsp90, as has been described previously. A 70-kDa protein was also observed and was shown by Western immunoblotting to react with an antibody specific to the 70-kDa heat shock protein. Thus, two progesterone receptor-associated proteins are identical, or closely related, to heat shock proteins. When the two progesterone receptor species, A and B, were isolated separately in the absence of hormone, both were obtained in association with hsp90 and the 70-kDa protein. However, activated receptor isolated from oviduct nuclear extracts was associated with the 70-kDa protein, but not with hsp90. A hormone-dependent dissociation of hsp90 from the cytosolic form of the receptor complex was observed within the first hour of in vivo progesterone treatment, which could explain the lack of hsp90 in nuclear receptor complexes. In a cell-free system, hsp90 binding to receptor was stabilized by molybdate but disrupted by high salt. These treatments, however, did not alter the binding of the 70-kDa protein to receptor. Association of the 70-kDa protein with the receptor could be disrupted by the addition of ATP at elevated temperatures (23 degrees C). The receptor-associated 70-kDa protein is an ATP-binding protein, as demonstrated by its affinity labeling with azido[32P]ATP. These results indicate that the two receptor-associated proteins interact with the progesterone receptor by different mechanisms and that they are likely to affect the structure or function of the receptor in different ways.  相似文献   

3.
Heat shock proteins are rapidly synthesized when cells are exposed to stressful agents that cause protein damage. The 70-kDa heat shock induced proteins and their closely related constitutively expressed cognate proteins bind to unfolded and aberrant polypeptides and to hydrophilic peptides. The structural features of the 70-kDa heat shock proteins that confer the ability to associate with diverse polypeptides are unknown. In this study, we have used circular dichroism (CD) spectroscopy and secondary structure prediction to analyze the secondary structure of the mammalian 70-kDa heat shock cognate protein (hsc 70). The far-ultraviolet CD spectrum of hsc 70 indicates a large fraction of alpha-helix in the protein and resembles the spectra one obtains from proteins of the alpha/beta structural class. Analysis of the CD spectra with deconvolution methods yielded estimates of secondary structure content. The results indicate about 40% alpha-helix and 20% aperiodic structure within hsc 70 and between 16-41% beta-sheet and 21-0% beta-turn. The Garnier-Osguthorpe-Robson method of secondary structure prediction was applied to the rat hsc 70 amino acid sequence. The predicted estimates of alpha-helix and aperiodic structure closely matched the values derived from the CD analysis, whereas the predicted estimates of beta-sheet and beta-turn were midway between the CD-derived values. Present evidence suggests that the polypeptide ligand binding domain of the 70-kDa heat shock protein resides within the C-terminal 160 amino acids [Milarski, K. L., & Morimoto, R. I. (1989) J. Cell Biol. 109, 1947-1962].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We describe the biochemical characterization and purification of the small 28,000-dalton heat shock protein (28-kDa protein) of mammalian cells. Metabolic pulse labeling of heat shock-treated cells with either [3H]leucine or H3 32PO4 and analysis of the labeled proteins by two-dimensional gel electrophoresis revealed increased levels of three 28-kDa proteins differing only in their relative isoelectric point. Using both peptide mapping and immunological analysis, we demonstrate that all three proteins are related isoforms, with two of the isoforms containing phosphate. Cell fractionation studies revealed that the 28-kDa protein localizes predominantly within the nuclear pellet very shortly after the heat shock treatment. With increasing times of recovery of the heat-treated cells back at 37 degrees C, the majority of the 28-kDa protein was now observed to fractionate within the soluble fraction of the cells. Both gel filtration and velocity sedimentation studies revealed that the 28-kDA protein exists as a higher order structure with an approximate S20,w value of 10-18 S, a Stokes radius of about 60-70 A, and an estimated native molecular mass of at least 500,000 daltons. We describe a relatively simple and rapid purification of the proteins employing both ion-exchange and gel filtration chromatography.  相似文献   

5.
Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown at 70 degrees C and heat shocked at 88 degrees C for 60 min showed thermotolerance at 95 degrees C, and Thermomyces lanuginosus grown at 50 degrees C and heat shocked at 55 degrees C for 60 min showed thermotolerance at 58 degrees C. Determinations of protein synthesis during heat shock revealed differences in the dominant heat shock proteins for each species. For B. caldolyticus, a 70-kDa protein dominated while for S. shibatae, a 55-kDa protein dominated and for T. lanuginosus, 31- to 33-kDa proteins dominated. Reagents that disrupted normal protein synthesis during heat shock prevented the enhanced thermotolerance.  相似文献   

6.
To elucidate a role for heat shock proteins in islet function, isolated pancreatic islets were labeled with [35S]methionine after control, heat shock, or interleukin 1 beta (IL-1 beta) treatment, extracted in the presence of detergent, and then passed over affinity columns with antibodies against heat shock protein 70 (hsp 70), hsp 70 itself, or ATP conjugated to the columns. In control or IL-1 beta-treated islets, the antibody column efficiently absorbed hsp 70 together with two other proteins of molecular masses 46 and 53 kDa. In extracts from heat-shocked cells, the binding of cellularly synthesized hsp 70 to the antibody column was inefficient but improved by the addition of unlabeled partially purified hsp 70 to the extracts. When assessing the binding of proteins in the extracts to the hsp 70 column, hsp 70 and the 46- and 53-kDa proteins among others all bound to the column. No differences in the patterns of binding to the hsp 70 column between extracts from the different islet exposures were noticed. The 46-kDa protein was identified as actin by immunoblot analysis. ATP-agarose column chromatography revealed a pattern of binding similar to that of the hsp 70 column. It is concluded that hsp 70 contains at least two functional domains, one adjacent to the epitope recognized by the antibody and active in restoring cellular function after heat shock, whereas the other has the ability to bind the 46- and 53-kDa and possibly other proteins. Furthermore, the stress induced by heat shock differs significantly from that after IL-1 beta treatment with respect to the functional behavior of hsp 70.  相似文献   

7.
8.
9.
10.
Stress-induced release of HSC70 from human tumors   总被引:3,自引:0,他引:3  
In this study, we demonstrate that the pro-inflammatory cytokine interferon-gamma (IFN-gamma) induces the active release of the constitutive form of the 70-kDa heat shock protein (HSC70) from K562 erythroleukemic cells. Treatment of K562 cells with IFN-gamma induced the upregulation of the inducible form of the 70-kDa heat shock protein (HSP70), but not the constitutive form of HSC70 within the cytosol, in a proteasome-dependent manner. In addition, IFN-gamma induced the downregulation of surface-bound HSC70, but did not significantly alter surface-bound HSP70 expression. These findings indicate that HSC70 can be actively released from tumor cells and is indicative of a previously unknown mechanism by which immune modulators stimulate the release of intracellular HSC70. This mechanism may account for the potent chaperokine activity of heat shock proteins recently observed during heat shock protein-based immunotherapy against a variety of cancers.  相似文献   

11.
We have observed that the approximately 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approximately 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approximately 90-kDa heat shock protein (Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3121-3125). The observation that TSTA and the approximately 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested to us that the doublet we observed is also due to the existence of two isoforms. However, unlike TSTA, which appears to contain the two isoforms in similar relative abundance, nonactivated glucocorticoid-receptor complexes seem to contain predominantly the lower molecular mass isoform. We have therefore conducted this study to determine whether TSTA and the approximately 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approximately 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. By comparing Meth A TSTA and the approximately 90-kDa component of the receptor in their reactions with the AC88 monoclonal antibody (specific for the approximately 90-kDa heat shock protein) and a polyclonal antibody directed against Meth A TSTA, we found that these two proteins are indistinguishable and probably identical. We then used the BuGR1 (directed against the steroid-binding subunit of glucocorticoid receptors) and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approximately 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [35S]methionine to metabolically label proteins to steady state. Following analysis of the proteins by polyacrylamide gel electrophoresis under denaturing and reducing conditions, the relative amounts of the two isoforms in each sample were determined from the 35S counts and the known methionine content of each isoform. We found that approximately three-quarters of both the receptor-associated and the free approximately 90-kDa heat shock protein is present as the lower molecular weight isoform, indicating no preferential binding of either isoform in the receptor. The long-term metabolic labeling approach has also enabled us to direc  相似文献   

12.
E R Johnson  D B McKay 《Biochemistry》1999,38(33):10823-10830
ATP binding induces a conformational change in 70-kDa heat shock proteins (Hsp70s) that facilitates release of bound polypeptides. Using the bovine heat shock cognate protein (Hsc70) as a representative of the Hsp70 family, we have characterized the effect of mutations on the coupling between ATP binding and the nucleotide-induced conformational change. Steady-state solution small-angle X-ray scattering and kinetic fluorescence measurements on a 60-kDa fragment of Hsc70 show that point mutations K71M, E175S, D199S, and D206S in the nucleotide binding cleft impair the ability of ATP to induce a conformational change. A secondary mutation in the peptide binding domain, E543K, "rescues" the ATP-induced transition for three of these mutations (E175S/E543K, D199S/E543K, and D206S/E543K) but not for K71M/E543K. Analysis of kinetics of the ATPase cycle confirm that these effects do not result from unexpectedly rapid ATP hydrolysis or slow ATP binding. Crystallographic structures of E175S, D199S, and D206S mutant ATPase fragment proteins show that the mutations do not perturb the tertiary structure of the protein but do significantly alter the protein-ligand interactions, due in part to an apparent charge compensation effect whereby mutating a (probably) negatively charged carboxyl group to a neutral serine displaces a K+ ion from the nucleotide binding cleft in two out of three cases (E175S and D199S but not D206S).  相似文献   

13.
Isolation and characterization of a soybean hsp70 gene   总被引:7,自引:0,他引:7  
  相似文献   

14.
Progesterone receptor complexes were purified from crude cytosol in a rapid, gentle, one-step procedure using anti-receptor monoclonal antibodies covalently attached to an agarose resin. Five nonreceptor proteins specifically co-purified with unactivated avian progesterone receptor; these proteins had molecular masses of approximately 90, 70, 54, 50, and 23 kDa. The 90- and 70-kDa proteins have been previously identified as the 90-kDa heat shock protein and a member of the 70-kDa heat shock protein family, respectively. The 54-, 50-, and 23-kDa proteins have not been previously described as associated with avian progesterone receptor. Two-dimensional gel electrophoresis revealed charge heterogeneities for all five proteins. Except for p70, each could be dissociated from receptor by salt, a process inhibited by sodium molybdate. However, molybdate was not required for protein association with receptor in low ionic strength. Following progesterone treatment in vivo p70 still co-purified with cytosolic receptor although the other affiliated proteins were reduced, suggesting hormone-dependent dissociation in conjunction with receptor activation. One of the proteins, p54, displayed in vitro hormone-dependent dissociation which was not prevented by molybdate.  相似文献   

15.
Herbimycin A, which has been known to inactivate and degrade p60v-src tyrosine kinase, induced an elevated synthesis of a protein with a molecular size of 70 kDa in A431 human epidermoid carcinoma cells. This protein showed the same migration distance on SDS-polyacrylamide gel electrophoresis as that of the protein induced in the cells by heat shock treatment, and this 70-kDa protein was identified as a member of the heat shock protein 70 family (hsp70) through immunoprecipitation with anti-hsp72/73 antibody and partial digestion with V8 protease. The induced level of the 70-kDa protein was dependent on the length of period and the concentration of herbimycin A treatment. Cellular fractionation and indirect immunofluorescence analyses revealed that the 70-kDa protein induced by herbimycin A was localized in the cytoplasm, in contrast to the nuclear distribution of hsp70 induced by heat treatment. Induction of hsp70 by herbimycin A was also observed in several other cells, including HeLa S3 cells, chicken embryo fibroblasts, NIH3T3 cells, and Rous sarcoma virus-transformed NIH3T3 cells.  相似文献   

16.
E Hickey  S E Brandon  S Sadis  G Smale  L A Weber 《Gene》1986,43(1-2):147-154
Plasmids containing cDNA copies of mRNAs induced in HeLa cells by heat shock have been isolated and characterized. In vitro translation of RNAs selected by hybridization to plasmid DNAs identified sequences representing the three major classes (89, 70 and 27-kDa) of heat-shock proteins (hsp) and a 60-kDa minor hsp. Plasmids with inserts specific for the 27, 60, and 70-kDa hsp each hybridize with a single discrete size class of heat-inducible mRNA. Plasmids specific for the 89-kDa protein, however, hybridize with either a 2.7- or 2.95-kb mRNA species. Both mRNAs are coordinately induced during heat shock. We show that the characteristic pattern of induction and repression of each class of hsp during sustained hyperthermia is the result of changes in the steady state level of each mRNA.  相似文献   

17.
Heat-resistant variants have been selected from B16 melanoma cells and from surface mutants previously derived from them. The aim of the present study was to explore the possible role of heat shock proteins in the manifestation of this heat resistance. The major heat shock proteins evident after heating have subunit molecular weights of 68, 70, 89, and 110K on sodium dodecyl sulfate-polyacrylamide gels. The 68-kDa protein is not evident in any of the unheated B16 cell lines while the levels of the other heat shock proteins are elevated after heating. The constitutive levels of the 70, 89, and 110-kDa heat shock proteins were assessed after gel electrophoretic separation of proteins in several of the heat-resistant variants. No major differences were found in the levels of these proteins between the heat-sensitive parent lines and the heat-resistant variants. We therefore conclude that heat shock proteins are not a determining factor in the heat-resistant phenotype of B16 melanoma cells.  相似文献   

18.
A subset of heat shock proteins, HSP90 alpha, HSP90 beta, and a member of the HSP70 family, HSC70, shows enhanced synthesis following mitogenic activation as well as heat shock in human peripheral blood mononuclear cells. In this study, we have examined expression of mRNA for these proteins, including the major 70-kDa heat shock protein, HSP70, in mononuclear cells following either heat shock or mitogenic activation with phytohemagglutinin (PHA), ionomycin, and the phorbol ester, tetradecanoyl phorbol acetate. The results demonstrate that the kinetics of mRNA expression of these four genes generally parallel the kinetics of enhanced protein synthesis seen following either heat shock or mitogen activation and provide clear evidence that mitogen-induced synthesis of HSC70 and HSP90 is due to increased mRNA levels and not simply to enhanced translation of preexisting mRNA. Although most previous studies have focused on cell cycle regulation of HSP70 mRNA, we found that HSP70 mRNA was only slightly and transiently induced by PHA activation, while HSC70 is the predominant 70-kDa heat shock protein homologue induced by mitogens. Similarly, HSP90 alpha appears more inducible by heat shock than mitogens while the opposite is true for HSP90 beta. These results suggest that, although HSP70 and HSC70 have been shown to contain similar promoter regions, additional regulatory mechanisms which result in differential expression to a given stimulus must exist. They clearly demonstrate that human lymphocytes are an important model system for determining mechanisms for regulation of heat shock protein synthesis in unstressed cells. Finally, based on kinetics of mRNA expression, the results are consistent with the hypothesis that HSC70 and HSP90 gene expression are driven by an IL-2/IL-2 receptor-dependent pathway in human T cells.  相似文献   

19.
Exposure of cells to heat induces thermotolerance, a transient resistance to subsequent heat challenges. It has been shown that thermotolerance is correlated in time with the enhanced synthesis of heat shock proteins. In this study, the association of induced heat shock proteins with various cellular fractions was investigated and the heat-induced changes in skeletal protein composition in thermotolerant and control cells was compared. All three major heat shock proteins induced in Chinese hamster fibroblasts after a 46 degrees C, 4-min heat treatment (70, 87, and 110 kDa) were purified with the cytoplasmic fraction, whereas only the 70-kDa protein was also found in other cell fractions, including that containing the cellular skeleton. Immediately after a second heat treatment at 45 degrees C for 45 min, the 110-kDa protein from thermotolerant cells also purified extensively with the cellular skeletal fraction. In this regard, the 110-kDa protein behaved similarly to many other cellular proteins, since we observed an overall temperature-dependent increase in the total labeled protein content of the high-salt-resistant cellular skeletal fraction after heat shock. Pulse-chase studies demonstrated that this increased protein content gradually returned to normal levels after a 3-hr incubation at 37 degrees C. The alteration or recovery kinetics of the total labeled protein content of the cellular skeletal fraction after heat shock did not correlate with the dramatic increase in survival observed in thermotolerant cells. The relationship between heat shock proteins and thermotolerance, therefore, does not correlate directly with changes in the heat-induced cellular alterations leading to differences in protein fractionation.  相似文献   

20.
Heat shock response in mycoplasmas, genome-limited organisms.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have measured the effect of heat shock on three mycoplasmas (Acholeplasma laidlawii K2 and JA1 and Mycoplasma capricolum Kid) and demonstrated the induction of mycoplasma heat shock proteins under these conditions. Increased synthesis of at least 5 heat shock proteins in A. laidlawii K2, 11 heat shock proteins in A. laidlawii JA1, and 7 heat shock proteins in M. capricolum was observed by electrophoretic analysis of proteins from heat-shocked cells in sodium dodecyl sulfate-polyacrylamide gels. In all three strains, major heat shock proteins (66 to 68 and 26 to 29 kilodaltons [kDa]) were found. The 66- to 68-kDa protein cross-reacted with antibody to Escherichia coli DnaK protein, suggesting that this heat shock protein has been conserved in spite of major reductions in genetic complexity during mycoplasma evolution. A. laidlawii also contained a 60-kDa protein that cross-reacted with eubacterial GroEL protein and a 40-kDa protein that cross-reacted with E. coli RecA protein. Unlike with coliphages, the mycoplasma virus L2 progeny yield was not increased when virus was plated on heat-shocked A. laidlawii host cells. However, UV-irradiated L2 virus could be host cell reactivated by both A. laidlawii SOS repair and heat shock systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号