首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaving the water to bask (usually in the sun) is a common behavior for many freshwater turtles, with some species also engaging in “nocturnal basking.” Ectoparasite removal is an obvious hypothesis to explain nocturnal basking and has also been proposed as a key driver of diurnal basking. However, the efficacy of basking, day or night, to remove leeches has not been experimentally tested. Therefore, we examined the number of leeches that were removed from Krefft''s river turtles (Emydura macquarii krefftii) after experimentally making turtles bask at a range of times of day, durations, and temperatures. Turtles had high initial leech loads, with a mean of 32.1 leeches per turtle. Diurnal basking under a heat lamp for 3 hr at ~28°C significantly reduced numbers of leeches relative to controls. In diurnal trials, 90.9% of turtles lost leeches (mean loss of 7.1 leeches per turtle), whereas basking for 30 min under the same conditions was not effective (no turtles lost leeches, and all turtles were still visibly wet). Similarly, “nocturnal basking” at ~23°C for 3 hr was not effective at removing leeches. Only 18% of turtles lost leeches (one turtle lost one leech and another lost four leeches). Diurnal basking outdoors under direct sunlight for 20 min (mean temp = 34.5°C) resulted in a small reduction in leeches, with 50% of turtles losing leeches and an average loss of 0.7 leeches per turtle. These results indicate basking can remove leeches if temperatures are high or basking durations are long. However, it was only effective at unusually long basking durations in this system. Our data showed even the 20‐min period was longer than 70.1% of natural diurnal basking events, many of which took place at cooler temperatures. Therefore, leech removal does not appear to be the purpose of the majority of basking events.  相似文献   

2.
Two methods for isolating Salmonella and Arizona organisms from turtles, blending and excretion, were evaluated, and the percentage of isolates obtained by each method was compared with the percentage of isolates obtained by culture of turtle organs. The blending and excretion methods were equally effective in detecting the overall incidence of Salmonella and Arizona infections in turtles. The percentage of isolates obtained by specific organ culture, however, was less than the percentage obtained by the other two methods. The blending method detected a greater number of turtles with Arizona infections than did the excretion method, but there was no difference in the number of Salmonella infections detected by the two methods. The frequency of isolation of Arizona organisms from organs other than the small intestine and colon was higher than that of Salmonella.  相似文献   

3.
Attempts to eliminate Salmonella and Arizona infection from newly hatched turtles were made by dipping fresh eggs in cold solutions of Terramycin and Chloromycetin at 1,000, 1,200, 1,500 and 2,000 mug per ml for either 10, 20, or 30 min. Control groups consisted of hatchings produced from nondipped eggs or eggs dipped in chilled water. In two of the four experiments 5 to 10 eggs were blended on days 15, 30, and 45 post antibiotic dip treatment. Twenty-five to 60 hatchlings from each control or experimental dip groups were held in containers and the water was tested (excretion method) for Salmonella and Arizona every 15 or 30 days for 180 to 210 days after hatching. Representative turtles were homogenized (blending method) to determine if systemic infections were present. All specimens tested were enriched in tetrathionate and selenite cystine broth. Nondipped eggs and water-dipped eggs routinely showed Salmonella and Arizona present in egg homogenate and hatchlings emerging from these eggs excreted these pathogens. Terramycin- and Chloromycetin-dipped eggs were uniformly negative for these pathogens, only if fresh eggs were dipped. Bacteriological assay of container water and whole turtle homogenate from hatchlings were negative for Salmonella and Arizona if eggs were dipped in 1,000 mug of Terramycin early in the egg laying season or if eggs were dipped in 1,500 or 2,000 mug of Terramycin per ml late in the egg laying season. The results of temperature-differential egg dip studies suggest that this is a feasible and promising method by which to eradicate Salmonella and Arizona from the turtle.  相似文献   

4.
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

5.
Atypical mycobacteria (209 strains) were examined for susceptibility to rifampin by the proportion method by using Middlebrook 7H-10 agar. All strains of Mycobacterium kansasii and tap-water scotochromogens were inhibited by 0.25 to 1 μg of the drug per ml. Seventy-six per cent of M. scrofulaceum and 61% of M. intracellulare strains were susceptible to 4 μg/ml or less; 5% of the former and 8% of the latter were resistant to 16 μg/ml. All strains of M. gastri and M. triviale and most strains of M. terrae were sensitive to 1 to 4 μg/ml. Two strains of M. borstelense were both inhibited by 8 μg/ml. Nearly all strains of M. fortuitum were resistant to the drug. The results of this study suggest that rifampin may be a valuable agent for the treatment of many atypical mycobacterial infections.  相似文献   

6.
The activity of a new semisynthetic penicillin, α-carboxyl-3-thienylmethyl penicillin (BRL-2288) was determined against 535 clinical isolates of gram-negative bacilli, by using the tube dilution technique. Nearly 80% of isolates of Proteus spp. were inhibited by 3.12 μg or less of this antibiotic per ml. BRL-2288 was as active as ampicillin against Escherichia coli. It was slightly more active than carbenicillin or 6-(d-α-sulfoaminophenylacetamido)-penicillanic acid against Pseudomonas sp., with over half of the isolates being inhibited by 50 μg or less of BRL-2288 per ml. Isolates of Klebsiella sp. were routinely resistant to this antibiotic. The drug was bactericidal against most sensitive organisms. BRL-2288 was less active against large inocula. A strain of Pseudomonas sp. which developed resistance to carbenicillin also developed resistance to BRL-2288 simultaneously.  相似文献   

7.
Thirty-five strains of Torulopsis glabrata were tested by a tube dilution method for their susceptibility to amphotericin B, 5-fluorocytosine, and clotrimazole (Bay 5097). Amphotericin B was the most active in vitro, inhibiting all strains at a concentration of 1 μg/ml and killing all strains at 2 μg/ml. 5-Fluorocytosine inhibited over 80% of strains at 0.24 μg/ml, but three strains required ≥7.8 μg/ml for killing. A concentration of 2 μg of clotrimazole per ml inhibited less than 50% of strains, and 8 μg/ml killed only 10% of strains. Most strains of T. glabrata were killed by therapeutically achievable concentrations of amphotericin B and 5-fluorocytosine, but not clotrimazole.  相似文献   

8.
The rates of mineralization of phenol, benzoate, benzylamine, p-nitrophenol, and di(2-ethylhexyl) phthalate added to lake water at concentrations ranging from a few picograms to nanograms per milliliter were directly proportional to chemical concentration. The rates were still linear at levels of <1 pg of phenol or p-nitrophenol per ml, but it was less than the predicted value at 1.53 pg of 2,4-dichlorophenoxyacetate per ml. Mineralization of 2,4-dichlorophenoxyacetate was not detected in samples of lake water containing 200 ng of the chemical per ml. The slope of a plot of the rate of phenol mineralization in samples of three lakes as a function of its initial concentration was lower at levels of 1 to 100 μg/ml than at higher concentrations. In lake water and sewage supplemented with <60 ng of 14C-labeled benzoate or phenylacetate per ml, 95 to 99% of the radioactivity disappeared from solution, indicating that the microflora assimilated little or none of the carbon. The extent of mineralization of some compounds in samples of two lakes and sewage was least in the water with the lowest nutrient levels. No mineralization of 2,4-dichlorophenoxyacetate and the phthalate ester was observed in samples of an oligotrophic lake. These data suggest that mineralization of some chemicals at concentrations of <1 μg/ml is the result of activities of organisms different from those functioning at higher concentrations or of organisms that metabolize the chemicals at low concentrations but assimilate little or none of the substrate carbon.  相似文献   

9.
Aqueous solutions of 5-500 μg/ml aldicarb inhibited hatching of Heterodera schachtii. Addition of hatching agents, zinc chloride, or sugarbeet root diffusate, to the aldicarb solutions did not decrease the inhibition of hatching. When cysts were removed from the aldicarb solufions and then treated for 4 wk in sugarbeet root diffusate, larvae hatched and emerged. Treatments of newly hatched larvae of H. schachtii with 5-100 μg/ml aldicarb depressed later development of larvae on sugarbeet (Beta vulgaris). Similar treatments with aldicarb sulfoxide had less effect on larval development, and aldicarb sulfone had no effect. Numbers of treated larvae that survived and developed were inversely proportional to concentration (0.1-5.0 μg/ml) and duration (0-14 days) of aldicarb treatments. Development of H. schachtii on sugarbeet grown in aldicarb-treated soil was inversely proportional to the concentration of aldicarb in the tested range of 0.75 - 3.0 μg aldicarb/g of soil. Transfer of nematode-infected plants to soil with aldicarb retarded nematode development, whereas transfer of plants first grownin treated soil to nematode-infested soil only slightly suppressed nematode development. Development of H. schachtii was inhibited in slices of storage roots of table beet (B. vulgaris), sugarbeet and turnip, (Brassica rapa), that had grown in soil treated with aldicarb.  相似文献   

10.
Coumaphos, an organophosphate insecticide, is used for tick control in cattle dipping vats along the U.S.-Mexican border. Recently, several vats (problem vats) have experienced a loss of efficacy because of microbial degradation. Three morphologically distinct bacteria (designated B-1, B-2, and B-3) that metabolized coumaphos were isolated from enrichment cultures that were initiated from problem vat dip material. In general, amino acids, pyrimidines, and acetate supported growth; carbohydrates were not utilized. Only B-2 required growth factors. In resting cell experiments, coumaphos was hydrolyzed to diethylthiophosphoric acid and chlorferon by all three isolates. Chlorferon was subsequently metabolized by B-1 and B-2 to α-chloro-β-methyl-2,3,4-trihydroxy-trans-cinnamic acid. Only B-1 produced additional metabolites. Experiments with [benzo ring-labeled U-14C]coumaphos or chlorferon demonstrated that B-1 was capable of both mineralizing and incorporating into biomass the aromatic portion of the molecule. The majority of label, however, was recovered in the form of soluble products, including α-chloro-β-methyl-2,3,4-trihydroxy-trans-cinnamic acid. Although B-1 had the capacity to use chlorferon as a carbon source at low concentrations (100 μg/ml), visible growth at higher concentrations (1,000 μg/ml) was not observed. The addition of 400 μg of chlorferon per ml to B-1 cells in the mid-log phase of growth resulted in complete inhibition of growth, while the addition of 100 to 200 μg of chlorferon per ml resulted in partial inhibition. The growth of B-2 and B-3 was inhibited by 100 μg of chlorferon per ml. These data suggest that, although B-1 and, to a lesser extent, B-2 and B-3 are responsible for the primary degradation of coumaphos, other organisms in the enrichment culture may play a secondary role in coumaphos degradation by removing inhibitory products of coumaphos metabolism.  相似文献   

11.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

12.
A Janthinobacterium sp. and an actinomycete, both capable of mineralizing 2,4-dinitrophenol (DNP), were used to construct a consortium to mineralize DNP in nonaxenic bench-scale sequencing batch reactors (SBRs). Average Km values for DNP mineralization by pure cultures of the Janthinobacterium sp. and the actinomycete were 0.01 and 0.13 μg/ml, respectively, and the average maximum specific growth rate (μmax) values for them were 0.06 and 0.23/h, respectively. In the presence of NH4Cl, nitrite accumulation in pure culture experiments and in the SBRs was stoichiometric to initial DNP concentration and the addition of nitrogen enhanced DNP mineralization in the SBRs. Mineralization of 10 μg of DNP per ml was further enhanced in SBRs by the addition of glucose at concentrations of 100 and 500 μg/ml but not at 10 μg/ml. Possible mechanisms for this enhanced DNP mineralization in SBRs were suggested by kinetic analyses and biomass measurements. Average μmax values for DNP mineralization in the presence of 0, 10, 100, and 500 μg of glucose per ml were 0.33, 0.13, 0.42, and 0.59/h, respectively. In addition, there was greater standing biomass in reactors amended with glucose. At steady-state operation, all SBRs contained heterogeneous microbial communities but only one organism, an actinomycete, that was capable of mineralizing DNP. This research demonstrates the usefulness of supplemental substrates for enhancing the degradation of toxic chemicals in bioreactors that contain heterogeneous microbial communities.  相似文献   

13.
Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter “UCB” for “uncharacterized cyanobacterium”). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common “host” of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, “toxicity”) was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin on wild turtles in situ are warranted.  相似文献   

14.
Twenty chemicals were screened for their effectiveness in restricting colony spreading by four strains of a xerophilic mold, Eurotium amstelodami, on dichloran-18% glycerol agar. Triton X-100, Triton X-301, Tergitol NP-7, and Tergitol 15-S-3 (each at 200 μg/ml) and 1,000 μg of sodium deoxycholate, 1 μg of iprodione, 0.1 μg of propiconazole, and 0.01 μg of Maxim per ml were judged to be most effective for restricting the rate of colony spreading.  相似文献   

15.
Free-living nematodes are known to ingest food-borne pathogens and may serve as vectors to contaminate preharvest fruits and vegetables. Caenorhabditis elegans was selected as a model to study the effectiveness of sanitizers in killing Salmonella enterica serotype Poona ingested by free-living nematodes. Aqueous suspensions of adult worms that had fed on S. enterica serotype Poona were treated with produce sanitizers. Treatment with 20 μg of free chlorine/ml significantly (α = 0.05) reduced the population of S. enterica serotype Poona compared to results for treating worms with water (control). However, there was no significant difference in the number of S. enterica serotype Poona cells surviving treatments with 20 to 500 μg of chlorine/ml, suggesting that reductions caused by treatment with 20 μg of chlorine/ml resulted from inactivation of S. enterica serotype Poona on the surface of C. elegans but not cells protected by the worm cuticle after ingestion. Treatment with Sanova (850 or 1,200 μg/ml), an acidified sodium chlorite sanitizer, caused reductions of 5.74 and 6.34 log10 CFU/worm, respectively, compared to reductions from treating worms with water. Treatment with 20 or 40 μg of Tsunami 200/ml, a peroxyacetic acid-based sanitizer, resulted in reductions of 4.83 and 5.34 log10 CFU/worm, respectively, compared to numbers detected on or in worms treated with water. Among the organic acids evaluated at a concentration of 2%, acetic acid was the least effective in killing S. enterica serotype Poona and lactic acid was the most effective. Treatment with up to 500 μg of chlorine/ml, 1% hydrogen peroxide, 2,550 μg of Sanova/ml, 40 μg of Tsunami 200/ml, or 2% acetic, citric, or lactic acid had no effect on the viability or reproductive behavior of C. elegans. Treatments were also applied to cantaloupe rind and lettuce inoculated with S. enterica serotype Poona or C. elegans that had ingested S. enterica serotype Poona. Protection of ingested S. enterica serotype Poona against sanitizers applied to cantaloupe was not evident; however, ingestion afforded protection of the pathogen on lettuce. These results indicate that S. enterica serotype Poona ingested by C. elegans may be protected against treatment with chlorine and other sanitizers, although the basis for this protection remains unclear.  相似文献   

16.
Mode of Action of Lomofungin   总被引:7,自引:0,他引:7       下载免费PDF全文
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

17.
Bromelain is a proteolytic mixture obtained from pineapple (Ananas comosus (L. Merr)). It has diversified clinical properties and is used in alleviation of cancer, inflammation and oxidative stress. The current study focuses on extraction of bromelain from different parts of pineapple such as core, crown, fruit, peel and stem. The extracted enzyme was precipitated using ammonium sulphate at 40% saturation followed by dialysis. The fold of purification obtained for peel, crown, core, fruit and stem were found to be 1.948, 1.536, 1,027, 1.989, and 1.232 respectively. Bromelain activity was estimated using Azocasein assay, the highest activity was seen in peel at 3.417 U/μg. Antimicrobial activity and MIC of the bromelain purified and crude fractions was studied against the test organisms. Peel crude and purified extract exhibited highest inhibitory effect towards S. aureus followed by P. acne. The antioxidant activity was evaluated using DPPH antioxidant assay. IC50 values peel, fruit, stem and crown are found to be 13.158 μg/ml, 24.13 μg/ml and 23.33 μg/ml and 113.79 μg/ml respectively. The purified bromelain from peel, stem and crown was used to create a facewash formulation towards pathogens frequently associated with skin infections. Common skin pathogens like S. aureus and P. acne were found highly sensitive to its action. The aim of this study was to evaluate the potential of bromelain isolated from waste parts of pineapple in alleviation of acne due to its diverse antimicrobial properties.  相似文献   

18.
Ten strains of fungi were tested for tolerance to the fungicide benomyl. Verticillium chlamydosporium strain 2 did not grow in the presence of benomyl; Drechraeria coniospora strains 1 and 2 and Chaetomium sp. tolerated only 0.1 μg benomyl/ml medium; Acremonium bacillisporum, an unidentified fungus, and Phoma chrysanthemicola uniformly grew at 1 μg/ml, but some hyphae grew at higher benomyl concentrations; Fusarium sp. tolerated 475 μg/ml, but some hyphae grew on medium amended with 1,000 μg/ml; Verticillium lecanii and V. chlamydosporium strain 1 routinely tolerated 1,000 μg/ml. Fungi generally grew more slowly at higher than at lower benomyl concentrations. Strains with elevated tolerance to benomyl were selected from Acremonium bacillisporum, Drechmeria coniospora, Fusarium sp., and an unidentified fungus. These strains retained the increased tolerance after repeated transfers on unamended medium.  相似文献   

19.
Concentrations of cephalexin (an orally absorbed derivative of cephalosporin C) in serum and urine were determined in normal volunteers and patients. The in vitro antibacterial activity was also studied. All strains of group A β-hemolytic streptococci and Diplococcus pneumoniae were inhibited by 3.1 μg/ml. Of the Staphylococcus aureus strains, 88% were inhibited by 6.3 μg/ml, and 12.5 μg/ml was inhibitory for all S. aureus, 80% of Escherichia coli, 72% of Klebsiella-Aerobacter, and 56% of Proteus mirabilis strains. About 90 to 96% of E. coli, Klebsiella Aerobacter, and P. mirabilis strains were inhibited by 25 μg of cephalexin per ml. Pseudomonas and indole-positive Proteus strains proved to be quite resistant to cephalexin. Cephalexin was well absorbed after oral administration. A peak serum concentration of cephalexin of at least 5 μg/ml was achieved in each volunteer with 250 and 500-mg doses. A mean peak serum concentration of 7.7 μg/ml was achieved with 250-mg doses; 12.3μg/ml was achieved with 500-mg doses of antibiotic. Food did not interfere with absorption. Probenecid enhanced both the peak serum concentration and the duration of antibiotic activity in the serum. Over 90% of the administered dose was excreted in the urine within 6 hr. The mean peak serum concentration of cephalexin after an oral dose of 500 mg was adequate to inhibit all group A streptococci, D. pneumoniae, and S. aureus, 85% of E. coli, and about 40 to 75% of Klebsiella-Aerobacter and P. mirabilis strains. Levels of cephalexin in urine were adequate to inhibit over 90% of E. coli, and P. mirabilis and 80 to 96% of Klebsiella-Aerobacter strains.  相似文献   

20.
The potential leptospiral infection hazard in the use of vaccines prepared from canine kidney monolayer cultures was studied. Cell cultures were prepared from kidneys of dogs experimentally infected with Leptospira serotype canicola. Viable leptospires were found in kidney cell suspensions at the time of seeding, surviving trypsinization either at room temperature for approximately 2 hr or overnight at 4 C, even in the presence of antibiotics. In tissue cultures maintained without antibiotics, leptospires were cultured up to the time of involution of cells at 25 to 34 days of incubation. Cytopathogenic effects of leptospires on cultured kidney cells were not noted; neither was growth of leptospires remarkable. Generally, the leptospire culture titer decreased to 10-4 or 10-5 at the 4th hr or 1st day of incubation to 10-1 or negative by the 30th or 34th day of incubation. The addition of either a combination of penicillin (100 units per ml) plus streptomycin (100 μg/ml) or polymyxin B (50 units per ml) plus dihydrostreptomycin (100 μg/ml) to seeding cell suspensions resulted in the elimination of viable leptospires by the 4th hr of incubation. From cell cultures treated with neomycin (100 μg/ml) or chloramphenicol (100 μg/ml), leptospires were recovered, respectively, after 24 and 48 hr, but not thereafter. It was apparent that antibiotics, particularly the combination of polymyxin B and dihydrostreptomycin, could be effectively used to eliminate leptospires in tissue culture. Other antibiotics with known antileptospiral activities probably would be effective also. If antibiotics are not used in canine kidney tissue culture employed for viral vaccine preparations, rigid testing for the presence of leptospires in donor dogs and tissue-culture vaccine is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号