首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Evidence for capped poly(A) leaders of variable lengths located immediately upstream of the translation initiation codon was obtained by direct analyses of a major late mRNA species. A decapping-recapping method was used to specifically substitute a radioactively labeled phosphate for an unlabeled one within the cap structure. RNase H-susceptible sites were made by hybridizing synthetic oligodeoxyribonucleotides to the mRNA encoding a late major structural protein of 11 kilodaltons. Sequences of the type m7G(5')pppAmp (Ap)nUpG. . ., where n varies from a few to more than 40 nucleotides, were deduced by analysis of the length and sequence of RNase H, RNase T1, and RNase U2 digestion products.  相似文献   

3.
4.
P D Gershon  B Moss 《The EMBO journal》1993,12(12):4705-4714
VP55, the catalytic subunit of vaccinia virus poly(A) polymerase, has the remarkable property of adding 30-35 adenylates to RNA 3' ends in a rapid processive burst before an abrupt transition to slow, non-processive adenylate addition. Here, we demonstrate that this property results from the affinity of the enzyme for uridylate residues within the 3' 31-40 nt of the RNA primer. At physiological salt concentrations, both polyadenylation and stable VP55 binding required the presence of multiple uridylates within a 31-40 nt length of RNA, though specific RNA sequences were not necessary. Even DNA in which the deoxythymidylate residues were replaced with ribouridylates, could be polyadenylated in a processive manner. Both the unmethylated pyrimidine ring and a 2'-OH on the associated sugar are features of ribouridylates that are important for priming. The abrupt termination of processive polyadenylation was attributed to translocation of VP55 along the nascent poly(A) tail, which lacks uridylates for stable binding. As evidence for translocation and interaction with newly synthesized RNA, other homopolymer tails were synthesized by VP55 in the presence of Mn2+, which relaxes its donor nucleotide specificity. Only during poly(U) tail synthesis did processive nucleotide addition fail to terminate.  相似文献   

5.
We have identified and characterized one of the most strongly-expressed genes of cowpox virus (CPV). This is the gene encoding the major protein component of the A-type inclusion bodies produced by this virus. This gene (designated the 160K gene) is transcribed late during the infection. Analyses of its mRNAs showed that these late RNAs, unlike all other characterized late mRNAs of poxviruses, are uniform in length. However, the most remarkable feature of the mRNAs of the 160K gene is the structure of their 5'-termini. Most of these mRNAs have 5'-terminal poly(A) sequences containing 5-21 residues. Furthermore, these 5'-terminal poly(A) sequences are not complementary to the corresponding region of the template strand of the viral DNA. Instead, the nucleotide sequences of the mRNA and the viral DNA diverge at the site of the three As in the sequence 5'-TAAATG-3' containing the gene's initiation codon. Consequently, the poly(A) provides the leader sequences of these mRNAs. These unusual 5'-terminal structures suggest that the late mRNAs of pox-virus genes are generated by a novel process.  相似文献   

6.
Structure of vaccinia virus late promoters   总被引:36,自引:0,他引:36  
  相似文献   

7.
The nucleotide sequence of a 5.1 kilobase-pair fragment from the central portion of the vaccinia virus genome has been determined. Within this region, five complete and two incomplete open reading frames (orfs) are tightly-clustered, tandemly-oriented, and read in the leftward direction. Late mRNA start sites for the five complete orfs and one incomplete orf were determined by S1 nuclease mapping. The two leftmost complete orfs correlated with late polypeptides of 65,000 and 32,000 molecular weight previously mapped to this region. When compared with each other and with sequences present in protein data banks, the five complete orfs showed no significant homology matches amongst themselves or any previously reported sequence. The six putative promoters were aligned with three previously sequenced late gene promoters. While all of the nine are A-T rich, the only apparent consensus sequence is TAA immediately preceeding the initiator ATG. Identification of this tandemly-oriented late gene cluster suggests local organization of the viral genome.  相似文献   

8.
9.
The poly(A)-limiting element (PLE) restricts the length of the poly(A) tail to <20 nt when present in the terminal exon of a pre-mRNA. We previously identified a 65 kDa protein that could be cross-linked to a functional PLE, but not to an inactive mutant element. This binding was competed by poly(U) and poly(C), but not poly(A) or poly(G). Selectivity for the pyrimidine-rich portion of the PLE was demonstrated by RNase footprinting of the binding activity in total nuclear extract. A 65 kDa protein that selectively cross-linked to the functional PLE was purified by conventional chromatography and identified as the large subunit of U2 snRNP auxiliary factor (U2AF). Overexpression of U2AF65 in cells transfected with a PLE-containing reporter construct resulted in the appearance of a population of mRNAs with heterogeneous poly(A) tails. However, this effect was lost following deletion of the C-terminal RNA recognition motifs (RRMs). A C-->G mutation following the AG dinucleotide in the PLE resulted in mRNA with poly(A) ranging from 25-50 nt. This reverted to a discrete, <20 nt poly(A) tail in cells expressing U2AF65. Our results suggest that U2AF modulates the function of the PLE, perhaps by facilitating the binding of another protein to the element.  相似文献   

10.
11.
The detailed organization of the RNAs transcribed from an early gene cluster encoded by vaccinia virus has been determined from the information derived from several complementary techniques. These include hybrid selection coupled with cell-free translation to locate DNA sequences complementary to mRNAs encoding specific polypeptides; RNA filter hybridization to size and locate on the DNA mature RNAs as well as higher-molecular-weight RNAs; S1 nuclease mapping to precisely locate the 5' and 3' ends of the RNAs; S1 nuclease mapping to precisely locate the 5' and 3' ends of the RNAs; and fractionation of hybrid-selected mRNAs in an agarose gel containing methyl mercury hydroxide followed by the cell-free translation of these mRNAs to definitively ascertain the size of the mRNA encoding each polypeptide. The early gene cluster is located between 21 and 26 kilobases from the left end of the vaccinia virus genome and is encoded by a 5.0-kilobase EcoRI fragment which spans the HindIII-N, -M, and -K fragments. Transcribed towards the left terminus are four mature mRNAs, 1,450, 950, 780, and 400 nucleotides in size, encoding polypeptides of 55, 30, 20, and 10 kilodaltons, respectively. These mRNAs are colinear with the DNA template and are closely spaced such that the 5' terminus of one mRNA is within 50 base pairs of the 3' terminus of the adjacent RNA. In addition to the mature size mRNAs, there are higher-molecular-weight RNAs, 5,000, 3,300, 2,350, 2,300, 1,800, 1,700, and 1,350 nucleotides in size. The 5' and 3' termini of the high-molecular-weight RNAs are coterminal with the 5' and 3' termini of the mature size mRNA. The implications of this arrangement and the biogenesis of these early mRNAs are discussed.  相似文献   

12.
13.
14.
The poly(A)-limiting element (PLE) is a cis-acting sequence that acts to limit poly(A) tail length on pre-mRNA to <20 nt. Functional PLEs are present in a number of genes, underscoring the generality of this control mechanism. The current study sought to define further the position requirements for poly(A) length regulation and the core sequence that comprises a PLE. Increasing the spacing between the PLE and the upstream 3' splice site or between the PLE and the downstream AAUAAA had no effect on poly(A) length control. However, moving the PLE from the terminal exon to either an upstream exon or intron eliminated poly(A) length control. Poly(A) length control was further evaluated using a battery of constructs in which the PLE was maintained in the terminal exon, but where upstream introns were either deleted, modified, or replaced with a polypyrimidine tract. Poly(A) length control was retained in all cases, indicating that the key feature is the presence of the PLE in the terminal exon. A battery of mutations demonstrated the importance of the 5' pyrimidine-rich portion of the element. Finally, UV crosslinking experiments identified an approximately 62-kDa protein in Hela nuclear extract that binds to a wild-type 23-nt PLE RNA oligonucleotides but not to a mutated nonfunctional form of the element.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号