首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jenkins CL 《Plant physiology》1989,89(4):1231-1237
The effect of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)-propenoate (DCDP), an analog of phosphoenolpyruvate (PEP), on PEP carboxylase activity in crude leaf extracts and on photosynthesis of excised leaves was examined. DCDP is an effective inhibitor of PEP carboxylase from Zea mays or Panicum miliaceum; 50% inhibition was obtained at 70 or 350 micromolar, respectively, in the presence of 1 millimolar PEP and 1 millimolar HCO3. When fed to leaf sections via the transpiration stream, DCDP at 1 millimolar strongly inhibited photosynthesis in C4 species (79-98% inhibition for a range of seven C4 species), but only moderately in C3 species (12-46% for four C3 species), suggesting different mechanisms of inhibition for each photosynthetic type. The response of P. miliaceum (C4) net photosynthesis to intercellular pCO2 showed that carboxylation efficiency, as well as the CO2 saturated rate, are lowered in the presence of DCDP and supported the view that carboxylation efficiency in C4 species is directly related to PEP carboxylase activity. A fivefold increase in intercellular pCO2 over that occurring in P. miliaceum under normal photosynthesis conditions only increased net photosynthesis rate in the presence of 1 millimolar DCDP from zero to about 5% of the maximal uninhibited rate. Therefore, it seems unlikely that direct fixation of atmospheric CO2 by the bundle sheath cells makes any significant contribution to photosynthetic CO2 assimilation in C4 species. The results support the concept that C4-selective herbicides may be developed based on inhibitors of C4 pathway reactions.  相似文献   

2.
The effect of 5-5′-dithiobis-2-nitrobenzoate (DTNB) on the kinetic parameters and structure of phosphoenolpyruvate carboxylase purified from maize (Zea mays L.) has been studied. The Vmax is found to be independent of the presence of this thiol reagent. The Km is increased upon oxidation of cysteines by DTNB. At a substrate concentration higher than Km (3.1 millimolar Mgphosphoenolpyruvate), a significant reversible decrease of the activity is observed. Malate has little effect in preventing the modification of these cysteines. The V type inhibition by malate was also studied at a saturating phosphoenolpyruvate level (9.3 millimolar Mgphosphoenolpyruvate). In the presence of 50 micromolar DTNB, up to 60% inhibition is caused by 15 millimolar malate; however, in the presence of both 50 micromolar DTNB and 50 millimolar dithiothreitol (DTT) this inhibition is reduced to 20%. The presence of DTT alone increases the size of the phosphoenolpyruvate carboxylase molecule as determined by light scattering. The activity at nonsaturating substrate concentration is increased by 36% in the presence of DTT. The oligomerization equilibrium between the dimer and the tetrameric form of the enzyme is affected by cysteine. The Km for the substrate, the sensitivity toward malate, and the size of the enzyme are found to be modified upon incubation in the presence of DTT.  相似文献   

3.
Values of δ13C and levels of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase were analyzed in segments from the fourth leaf of young maize (Zea mays L.) plants. The δ13C values became significantly more negative from the base to the tip of the leaves. Phosphoenolpyruvate carboxylase levels and ribulose bisphosphate carboxylase levels both increased from the base to the tip. The principal effect of phosphoenolpyruvate carboxylase levels or δ13C should arise through its effect on the carboxylation/diffusion balance in the mesophyll. In this case, δ13C values should become more negative as phosphoenolpyruvate carboxylase levels increase, unless there are offsetting changes in stomatal aperture. The principal effect of ribulose bisphosphate carboxylase/oxygenase on δ13C should occur through its effect on the extent of leakage of CO2 from the bundle sheath cells. In this case, δ13C values should become more positive as ribulose bisphosphate carboxylase levels increase. Accordingly, the variation in δ13C values seen in maize leaves appears to be the result of variations in the level of phosphoenolpyruvate carboxylase.  相似文献   

4.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   

5.
The effect of SO32? on the activity of PEP-carboxylase and on subsequent malate formation has been studied in leaf extracts of Zea mays. PEP-carboxylase was assayed by incorporation of H14CO3 - into oxaloacetate dinitrophenylhydrazone and by a spectrophotometric method. In contrast to ribulose diphosphate carboxylase, PEP-carboxylase was not inhibited by 10 mM SO32? with respect to PEP. As was the case with ribulose diphosphate carboxylase, the activity of PEP-carboxylase was inhibited non-competitively with respect to Mg2+. However, the Ki value (84.5 mM) was found to be very high. With respect to HCO3?, like ribulose diphosphate carboxylase, PEP-carboxylase was inhibited competitively, but the Ki value (27 mM SO32?) increased by about the same factor (× 9) as the Km, (0·5 mM HCO3?) is decreased. This indicates that the replacement of HCO3? by SO32?, common to both enzymes, is facilitated by decreasing the affinity of the enzyme for HCO3?. At substrate saturating conditions malate formation by the combined action of PEP-carboxylase and endogenous NADH-dependent malate dehydrogenase in leaf extracts was not inhibited by 10 mM SO32?. Although the malate dehydrogenase is inhibited at this SO32? concentration to about 85%, malate formation is unaffected, as PEP-carboxylase is the rate limiting step its turnover rate being only about 8% of NADH-dependent malate dehydrogenase.  相似文献   

6.
A phosphoenolpyruvate (PEP) phosphatase was purified to homogeneity from germinating mung beans (Vigna radiata). It was found to be a tetrameric protein (molecular mass 240,000 daltons) made up of apparently identical subunits (subunit molecular mass 60,000 daltons). It was free from bound nucleotides. It did not show pyruvate kinase activity. The enzyme showed high specificity for PEP. Pyrophosphate and some esters (nucleoside di- and triphosphates) were hydrolyzed slowly and phosphoric acid monoesters were not hydrolyzed. The enzyme showed maximum activity at pH 8.5. At this pH, the Km of PEP was 0.14 millimolar and the Vmax was equal to 1.05 micromoles pyruvate formed per minute per milligram enzyme protein. Dialysis of the enzyme against 10 millimolar triethanolamine buffer (pH 6.5), led to loss of the catalytic activity, which was restored on addition of Mg2+ ions (Km = 0.12 millimolar). Other divalent metal ions inhibited the Mg2+ -activated enzyme. PEP-phosphatase was inhibited by ATP and several other metabolites.  相似文献   

7.
These studies demonstrated that CO2 rather than HCO3 is the inorganic carbon metabolite produced by the C4 acid decarboxylases involved in C4 photosynthesis (chloroplast located NADP malic enzyme, mitochondrial NAD malic enzyme, and cytosolic phosphoenolpyruvate [PEP] carboxykinase). The effect of varying CO2 or HCO3 as a substrate for the carboxylation reaction catalyzed by these enzymes or as inhibitors of the decarboxylation reaction was also determined. The KmCO2 was 1.1 millimolar for NADP malic enzyme and 2.5 millimolar for PEP carboxykinase. For these two enzymes the velocity in the carboxylating direction was substantially less than for the decarboxylating direction even with CO2 concentrations at the upper end of the range of expected cellular levels. Activity of NAD malic enzyme in the carboxylating direction was undetectable. The decarboxylation reaction of all three enzymes was inhibited by added HCO3. For NADP malic enzyme CO2 was shown to be the inhibitory species but PEP carboxykinase and NAD malic enzyme were apparently inhibited about equally by CO2 and HCO3.  相似文献   

8.
In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte.  相似文献   

9.
Two isoforms of phosphoenolpyruvate carboxylase (PEPC) with very different regulatory properties were partially purified from the green alga Selenastrum minutum. They were designated PEPC1 and PEPC2. PEPC1 showed sigmoidal kinetics with respect to phosphoenolpyruvate (PEP) whereas PEPC2 exhibited a typical Michaelis-Menten response. The S0.5(PEP) of PEPC1 was 2.23 millimolar. This was fourfold greater than the S0.5(PEP) of PEPC2, which was 0.57 millimolar. PEPC1 was activated more than fourfold by 2.0 millimolar glutamine and sixfold by 2.0 millimolar dihydroxyacetone phosphate (DHAP) at a subsaturating PEP concentration of 0.625 millimolar. In contrast, PEPC2 showed only 8% and 52% activation by glutamine and DHAP, respectively. The effects of glutamine and DHAP were additive. PEPC1 was more sensitive to inhibition by glutamate, 2-oxoglutarate, and aspartate than PEPC2. Both isoforms were equally inhibited by malate. All of these metabolites affected only the S0.5(PEP) not the Vmax. The regulatory properties of S. minutum PEPC in vitro are discussed in terms of (a) increased rates of dark carbon fixation (shown to be catalyzed predominantly by PEPC) and (b) changes in metabolite levels in vivo during enhanced NH4+ assimilation. Finally, a model is proposed for the regulation of PEPC in vivo in relation to its role in replenishing tricarboxylic acid cycle intermediates consumed in NH4+ assimilation.  相似文献   

10.
Kochia sieversiana (Pall.) C.A. Mey. is a forage plant that can grow in extremely alkalinized grasslands at pH 10 or higher. Accumulation of a large amount of oxalic acid (OxA) is a primary characteristic of K. sieversiana. In our study, seedlings of K. sieversiana were exposed to the following conditions: non-stress, salinity (200 mM, a molar ratio of NaCl and Na2SO4 1:1), and alkali stress (200 mM, a molar ratio of NaHCO3 and Na2CO3 1:1). Growth, water content, content of organic acids (including OxA), Na+, and K+, and activities of some OxA metabolism-related enzymes were determined. Results show that glycolate oxidase was the key enzyme for OxA synthesis; however, the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase (PEPC) probably played a minor role in the OxA-synthetic pathway. The pathway of L-ascorbic acid catabolism was not the main source of OxA accumulation, and the activity of oxalate oxidase (OxO) involved in OxA decomposition was not a limiting factor for inner OxA accumulation. Taken together, accumulation of a large amount of OxA are not related to the degradation and secretion function of OxO but largely depend upon its synthetic function.  相似文献   

11.
The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3 and low CO2 concentration, suggesting its participation in the dehydration of HCO3 to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3 was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3 catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus.  相似文献   

12.
Incubation of the submersed aquatic macrophyte, Hydrilla verticillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/1) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 ?) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from hight Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

13.
Incubation of the submersed aquatic macrophyte, Hydrilla vertieillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/l) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 -) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from high Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

14.
Photosynthesis rates of detached Panicum miliaceum leaves were measured, by either CO2 assimilation or oxygen evolution, over a wide range of CO2 concentrations before and after supplying the phosphoenolpyruvate (PEP) carboxylase inhibitor, 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate (DCDP). At a concentration of CO2 near ambient, net photosynthesis was completely inhibited by DCDP, but could be largely restored by elevating the CO2 concentration to about 0.8% (v/v) and above. Inhibition of isolated PEP carboxylase by DCDP was not competitive with respect to HCO3, indicating that the recovery was not due to reversal of enzyme inhibition. The kinetics of 14C-incorporation from 14CO2 into early labeled products indicated that photosynthesis in DCDP-treated P. miliaceum leaves at 1% (v/v) CO2 occurs predominantly by direct CO2 fixation by ribulose 1,5-bisphosphate carboxylase. From the photosynthesis rates of DCDP-treated leaves at elevated CO2 concentrations, permeability coefficients for CO2 flux into bundle sheath cells were determined for a range of C4 species. These values (6-21 micromoles per minute per milligram chlorophyll per millimolar, or 0.0016-0.0056 centimeter per second) were found to be about 100-fold lower than published values for mesophyll cells of C3 plants. These results support the concept that a CO2 permeability barrier exists to allow the development of high CO2 concentrations in bundle sheath cells during C4 photosynthesis.  相似文献   

15.
Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism.  相似文献   

16.
Sipes DL  Ting IP 《Plant physiology》1989,91(3):1050-1055
Kinetic characteristics of phosphoenolpyruvate carboxylase (PEPC) from the epiphytic C3 or C4: CAM intermediate plant, Peperomia camptotricha, were investigated. Few day versus night differences in Vmax,Km(PEP)), or malate inhibition were observed, even in extracts from water-stressed plants which characteristically perform CAM, regardless of efforts to stabilize day/night forms. The PEPC extracted from plants during the light period remained stable, without much of an increase or decrease in activity for at least 22 hours at 0 to 4°C. Extracts from mature, fully developed leaves had slightly greater PEPC activity than from very young, developing leaves. Generally, however, the kinetic properties of PEPC extracted from mature leaves of plants grown under short day (SD), long day (LD), or 1-week water-stress conditions, as well as from young, developing leaves, were similar. The PEPC inhibitor, l-malate, decreased the Vmax and increased the Km(PEP) for all treatments. Under specific conditions, malate did not inhibit PEPC rates in the dark extracts as much as the light. The PEPC activator, glucose-6-phosphate (G-6-P), lowered the Km(PEP) for all treatments. At saturating PEP concentrations, PEPC activity was independent of pH in the range of 7.5 to 9.0. At subsaturating PEP concentrations, the pH optimum was 7.8. The rates of PEPC activity were lower in the light period extracts than the dark, at pH 7.1, but day/night PEPC was equally active at pH 7.8. At pH 7.5 and a subsaturating PEP concentration, G-6-P significantly activated PEPC. At pH 8, however, only slight activation by G-6-P was observed. The lower pH of 7.5 combined with l-malate addition, greatly inhibited PEPC, particularly in extracts from young, developing leaves which were completely inhibited at an l-malate concentration of 1 millimolar. However, malate did not further inhibit PEPC activity in mature leaves when assayed at pH 7.1. The fairly constant day/night kinetic and regulatory properties of PEPC from P. camptotricha are unlike those of PEPC from CAM or C4 species studied, and are consistent with the photosynthetic metabolism of this plant.  相似文献   

17.
18.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

19.
Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybean (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations.  相似文献   

20.
The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号