首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gpr161 (also known as RE2) is an orphan G protein-coupled receptor (GPCR) that is expressed during embryonic development in zebrafish. Determining its biological function has proven difficult due to lack of knowledge regarding its natural or synthetic ligands. Here, we show that targeted knockdown of gpr161 disrupts asymmetric gene expression in the lateral plate mesoderm, resulting in aberrant looping of the heart tube. This is associated with elevated Ca2+ levels in cells lining the Kupffer's vesicle and normalization of Ca2+ levels, by over-expression of ncx1 or pmca-RNA, is able to partially rescue the cardiac looping defect in gpr161 knockdown embryos. Taken together, these data support a model in which gpr161 plays an essential role in left-right (L-R) patterning by modulating Ca2+ levels in the cells surrounding the Kupffer's vesicle.  相似文献   

2.
3.
Mesendoderm formation and left-right patterning during vertebrate development depend upon selected members of the transforming growth factor beta superfamily, particularly Nodal and Nodal-related ligands. Two type I serine/threonine kinase receptors have been identified for Nodal, ALK4 and ALK7. Mouse embryos lacking ALK4 fail to produce mesendoderm and die shortly after gastrulation, resembling the phenotype of Nodal knockout mice. Whether ALK4 contributes to left-right patterning is still unknown. Here we report the generation and initial characterization of mice lacking ALK7. Homozygous mutant mice were born at the expected frequency and remained viable and fertile. Viability at weaning was not different from that of the wild type in ALK7(-/-); Nodal(+/-) and ALK7(-/-); ALK4(+/-) compound mutants. ALK7 and ALK4 were highly expressed in interdigital regions of the developing limb bud. However, ALK7 mutant mice displayed no skeletal abnormalities or limb malformations. None of the left-right patterning abnormalities and organogenesis defects identified in mice carrying mutations in Nodal or in genes encoding ActRIIA and ActRIIB coreceptors, including heart malformations, pulmonary isomerism, right-sided gut, and spleen hypoplasia, were observed in mice lacking ALK7. Finally, the histological organization of the cerebellum, cortex, and hippocampus, all sites of significant ALK7 expression in the rodent brain, appeared normal in ALK7 mutant mice. We conclude that ALK7 is not an essential mediator of Nodal signaling during mesendoderm formation and left-right patterning in the mouse but may instead mediate other activities of Nodal and related ligands in the development or function of particular tissues and organs.  相似文献   

4.
Vertebrate organisms are characterized by dorsal-ventral and left-right asymmetry. The process that establishes left-right asymmetry during vertebrate development involves bone morphogenetic protein (BMP)-dependent signaling, but the molecular details of this signaling pathway remain poorly defined. This study tests the role of the BMP type I receptor ACVRI in establishing left-right asymmetry in chimeric mouse embryos. Mouse embryonic stem (ES) cells with a homozygous deletion at Acvr1 were used to generate chimeric embryos. Chimeric embryos were rescued from the gastrulation defect of Acvr1 null embryos but exhibited abnormal heart looping and embryonic turning. High mutant contribution chimeras expressed left-side markers such as nodal bilaterally in the lateral plate mesoderm (LPM), indicating that loss of ACVRI signaling leads to left isomerism. Expression of lefty1 was absent in the midline of chimeric embryos, but shh, a midline marker, was expressed normally, suggesting that, despite formation of midline, its barrier function was abolished. High-contribution chimeras also lacked asymmetric expression of nodal in the node. These data suggest that ACVRI signaling negatively regulates left-side determinants such as nodal and positively regulates lefty1. These functions maintain the midline, restrict expression of left-side markers, and are required for left-right pattern formation during embryogenesis in the mouse.  相似文献   

5.
Levin M  Thorlin T  Robinson KR  Nogi T  Mercola M 《Cell》2002,111(1):77-89
A pharmacological screen identified the H+ and K+ ATPase transporter as obligatory for normal orientation of the left-right body axis in Xenopus. Maternal H+/K+-ATPase mRNA is symmetrically expressed in the 1-cell Xenopus embryo but becomes localized during the first two cell divisions, demonstrating that asymmetry is generated within two hours postfertilization. Although H+/K+-ATPase subunit mRNAs are symmetrically localized in chick embryos, an endogenous H+/K+-ATPase-dependent difference in membrane voltage potential exists between the left and right sides of the primitive streak. In both species, pharmacologic or genetic perturbation of endogenous H+/K+-ATPase randomized the sided pattern of asymmetrically expressed genes and induced organ heterotaxia. Thus, LR asymmetry determination depends on a very early differential ion flux created by H+/K+-ATPase activity.  相似文献   

6.
Fgf signaling plays essential roles in many developmental events. To investigate the roles of Fgf4 signaling in zebrafish development, we generated Fgf4 knockdown embryos by injection with Fgf4 antisense morpholino oligonucleotides. Randomized LR patterning of visceral organs including the liver, pancreas, and heart was observed in the knockdown embryos. Prominent expression of Fgf4 was observed in the posterior notochord and Kupffer's vesicle region in the early stages of segmentation. Lefty1, lefty2, southpaw, and pitx2 are known to play crucial roles in LR patterning of visceral organs. Fgf4 was essential for the expression of lefty1, which is necessary for the asymmetric expression of southpaw and pitx2 in the lateral plate mesoderm, in the posterior notochord, and the expression of lefty2 and lefty1 in the left cardiac field. Fgf8 is also known to be crucial for the formation of Kupffer's vesicle, which is needed for the LR patterning of visceral organs. In contrast, Fgf4 was required for the formation of cilia in Kupffer's vesicle, indicating that the role of Fgf4 in the LR patterning is quite distinct from that of Fgf8. The present findings indicate that Fgf4 plays a unique role in the LR patterning of visceral organs in zebrafish.  相似文献   

7.
Geminin plays an important role in coordinating the cell cycle with anterior–posterior patterning during embryonic development. However, whether it is involved in the regulation of left–right (LR) patterning remains unknown. Here, we reported that geminin is required for setting up heart and visceral laterality during zebrafish development. Defective heart and visceral laterality was observed in geminin morphants. Further study demonstrated that the left-sided nodal/spaw in the lateral plate mesoderm (LPM) as well as the sideness of its downstream targets lefty2 and lefty1 was perturbed in geminin morphants. Upstream of the left-sided Nodal signal along the regulatory cascade of LR asymmetry, knock down of geminin resulted in defective Kupffer’s vesicle (KV) formation and ciliogenesis rather than middle line defects. Predominant distribution of an antisense morpholino against geminin in dorsal forerunner cells (DFCs) led to defective KV morphogenesis and perturbed LR asymmetry, similar to those of geminin morphants, indicating a cell-autonomous role of geminin in regulating KV formation and ciliogenesis. Our results demonstrate that geminin is required for proper KV formation and ciliogenesis, thus playing an important part in setting up LR asymmetry.  相似文献   

8.
Intricate interactions between the Wnt and Bmp signaling pathways pattern the gastrulating vertebrate embryo using a network of secreted protein ligands and inhibitors. While many of these proteins are expressed post-gastrula, their later roles have typically remained unclear, obscured by the effects of early perturbation. We find that Bmp signaling continues during somitogenesis in zebrafish embryos, with high activity in a small region of the mesodermal progenitor zone at the posterior end of the embryo. To test the hypothesis that Bmp inhibitors expressed just anterior to the tailbud are important to restrain Bmp signaling we produced a new zebrafish transgenic line, allowing temporal cell-autonomous activation of Bmp signaling and thereby bypassing the effects of the Bmp inhibitors. Ectopic activation of Bmp signaling during somitogenesis results in severe defects in the tailbud, including altered morphogenesis and gene expression. We show that these defects are due to non-autonomous effects on the tailbud, and present evidence that the tailbud defects are caused by alterations in Wnt signaling. We present a model in which the posteriorly expressed Bmp inhibitors function during somitogenesis to constrain Bmp signaling in the tailbud in order to allow normal expression of Wnt inhibitors in the presomitic mesoderm, which in turn constrain the levels of canonical and non-canonical Wnt signaling in the tailbud.  相似文献   

9.
10.
The role of Na+/H+ exchange in protein kinase C-mediated effects in platelets was investigated by studying the effect of removal of extracellular Na+ ([Na+]e) on the different responses induced by phorbol 12-myristate 13-acetate (PMA) and 1,2-dioctanoylglycerol (diC8). None of the responses studied, namely, protein phosphorylation, translocation of enzyme activity to the membrane fraction, potentiatory and inhibitory effect on platelet activation ([Ca2+]i, arachidonate and granule release) showed an absolute dependence on [Na+]e. With the exception of dense-granule release, which was clearly potentiated by the removal of [Na+]e and showed a negative correlation with exchanger activity, the other effects of PMA and diC8 were not affected by [Na+]e removal. It is concluded that Na+/H+ exchange is not essential for protein kinase C activation in platelets.  相似文献   

11.
ATPase of yeast plasmalemma is known to be activated during incubation of cells or protoplasts with glucose. It has been shown that the level of ATPase activation is sharply decreased after pretreatment of cells or protoplasts with mercaptoethanol, dinitrophenol, gramicidin D, nigericin, or monensin. It is suggested that deenergization of yeast plasmalemma by monensin, nigericin, and mercaptoethanol as uncoupler plays a crucial role in the prevention of in vivo activation of plasma membrane ATPase by glucose. It is concluded that energization of yeast plasmalemma is necessary for activation of ATPase by glucose.  相似文献   

12.
13.
14.
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse.  相似文献   

15.
Plant vacuolar Na+/H+ antiporters play important roles in cellular ion homeostasis, vacuolar pH regulation and sequestration of Na+ ions into the vacuole. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na+/H+ transporting activity. In this study, we truncated the hydrophilic C terminus of a vacuolar Na+/H+ antiporter gene from Salicornia europaea (SeNHX1) to generate its derivative, SeNHX1- ΔC. Expression of SeNHX1 and SeNHX1- ΔC in yeast mutant showed that SeNHX1 significantly improved the tolerance to NaCl; however, the expression of SeNHX1- ΔC enormously decreased the tolerance to NaCl. Overall, these results suggest that the hydrophilic C-terminal region of SeNHX1 is required for Na+/H+ exchanging activity of SeNHX1.  相似文献   

16.
The effect of extracellular Na+ removal and replacement with other cations on receptor-mediated arachidonate release in platelets was studied to investigate the role of Na+/H+ exchange in this process. Replacement with choline+, K+, N-methylglucamine+ (which abolished the thrombin-induced pHi rise) or Li+ (which allowed a normal thrombin-induced pHi rise) significantly decreased arachidonate release in response to all concentrations (threshold to supra-maximal) of thrombin and collagen. This inhibition was not reversed by NH4Cl (10 mM) addition, which raised the pHi in the absence of Na+, but, on the contrary, NH4Cl addition further decreased the extent of thrombin- and collagen-induced arachidonate release, as well as decreasing 'weak'-agonist (ADP, adrenaline)-induced release and granule secretion in platelet-rich plasma. No detectable pHi rises were seen with collagen (1-20 micrograms/ml) and ADP (10 microM) in bis-(carboxyethyl)carboxyfluorescein-loaded platelets. Inhibition of thrombin-induced pHi rises was seen with 0.5-5 microM-5-NN-ethylisopropylamiloride (EIPA), but at these concentrations EIPA had little effect on thrombin-induced arachidonate release. At higher concentrations such as those used in previous studies (20-50 microM), EIPA inhibited aggregation/release induced by collagen and ADP in Na+ buffer as well as in choline+ buffer (where there was no detectable exchanger activity), suggesting that these concentrations of EIPA exert 'non-specific' effects at the membrane level. The results suggest that (i) Na+/H+ exchange and pHi elevations are not only necessary, but are probably inhibitory, to receptor-mediated arachidonate release in platelets, (ii) inhibition of receptor-mediated release in the absence of Na+ is most likely due to the absent Na+ ion itself, and (iii) caution should be exercised in the use of compounds such as EIPA, which, apart from inhibiting the Na+/H+ exchanger, have other undesirable and misleading effects in platelets.  相似文献   

17.
The invariant left-right asymmetry of animal body plans raises fascinating questions in cell, developmental, evolutionary, and neuro-biology. While intermediate mechanisms (e.g., asymmetric gene expression) have been well-characterized, very early steps remain elusive. Recent studies suggested a candidate for the origins of asymmetry: rotary movement of extracellular morphogens by cilia during gastrulation. This model is intellectually satisfying, because it bootstraps asymmetry from the intrinsic biochemical chirality of cilia. However, conceptual and practical problems remain with this hypothesis, and the genetic data is consistent with a different mechanism. Based on wide-ranging data on ion fluxes and motor protein action in a number of species, a model is proposed whereby laterality is generated much earlier, by asymmetric transport of ions, which results in pH/voltage gradients across the midline. These asymmetries are in turn generated by a new candidate for "step 1": asymmetric localization of electrogenic proteins by cytoplasmic motors.  相似文献   

18.
A dioleoylphosphatidylcholine unilamellar vesicle model system was used to determine proton permeability. The fluorescence of the pH reporter group, pyranine, trapped within vesicles with a difference in pH across the bilayer, was digitized and analyzed with numerical integration. When H+ flux was initiated by the acidification of the external buffer (acid jump), the apparent H+ permeability was found to be a linear function of the reciprocal of the internal H+ concentration with the slope inversely proportional to the initial size of the H+ gradient. When flux was initiated by the alkalinization of the external buffer (base jump), the apparent permeability coefficient was constant for each external H+ concentration. However, the value of the apparent permeability was linearly dependent on the reciprocal of the external H+. The possibility that carbonates (carbon dioxide, carbonic acid, bicarbonate and carbonate) could be acting as proton carriers was tested by adding millimolar concentrations of bicarbonate to solutions greatly reduced in carbonates. The slopes of the graphs of apparent permeability coefficient vs. reciprocal H+ were linear functions of added bicarbonate concentration for both acid and base jump conditions. These observations were interpreted in terms of a model suggesting that carbonic acid or carbon dioxide together with bicarbonate was an efficient proton carrier across phospholipid bilayers.  相似文献   

19.
Cytoplasmic Ca2+ is necessary for thrombin-induced platelet activation   总被引:1,自引:0,他引:1  
alpha-Thrombin induces a dose-dependent rapid transient increase in platelet cytosolic Ca2+ levels, coming solely from intracellular stores, since EGTA has no effect. In contrast, the post-stimulation equilibrium [Ca2+]in depends upon an influx from the extracellular milieu, and is lower in the presence of EGTA. We measured the Ca2+ transient (with Indo-1, 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2'-amino-5'-methylp henoxy)- ethane-N,N,N',N'-tetraacetic acid), cytosolic alkalinization (with BCECF, 2',7-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein), membrane depolarization (with diS-C3-(5), 3,3'-dipropylthiodi-carbocyanide iodide), and degranulation (by beta-glucuronidase release) induced in washed human platelets by 9 nM thrombin in the absence or presence of extracellular or intracellular Ca2+ chelating agents (EGTA and BAPTA, 5,5'-dimethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, respectively). Platelets loaded simultaneously with 2 microM Indo-1 and 15 microM BAPTA (each as the acetoxymethyl ester) before addition of thrombin exhibited no cytoplasmic Ca2+ transient or alkalinization, no depolarization or degranulation. Replenishment of such cells with extracellular CaCl2 restored resting [Ca2+]in. Upon stimulation with 9 nM thrombin these replenished platelets exhibited no Ca2+ transient, and a slow gradual increase in [Ca2+]in from extracellular stores, a slow alkalinization and depolarization, and partial degranulation, all abolished by extracellular EGTA. Thus thrombin-induced platelet activation exhibits a biphasic Ca2+ requirement: the initial transient increase in [Ca2+]in comes from intracellular stores only, while the later steps of depolarization, alkalinization, and degranulation can proceed, albeit more slowly, if only extracellular Ca2+ is available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号