首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was demonstrated that the nuclear matrix of rat liver possesses the protease activity. The specific activity of nuclear matrix proteases exceeds that of intact nuclei 7-fold. The optimum activity of nuclear matrix proteases is observed at pH 8-9. The protease activity of the nuclear matrix is inhibited by p-chloromercuribenzoate, N-ethylmaleimide, EDTA, phenylmethylsulfonyl fluoride. This suggests that thiol, serine and metalloproteases are associated with the nuclear matrix.  相似文献   

2.
Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.  相似文献   

3.
DNA polymerase alpha activity was markedly higher in all nuclear subfractions, including nuclear matrix, from transplanted R3230AC mammary adenocarcinomas than in the analogous fractions from mammary gland of same tumor-bearing pregnant or lactating rats. Changes in host lactational status had no significant effect on subnuclear distribution of tumor DNA polymerase alpha activity, with the majority (60-75%) localized in soluble nucleoplasm and a significant amount (13-20%) retained in the nuclear matrix. In the host mammary gland, nuclear matrix-bound DNA polymerase alpha was highest, accounting for 48% of total nuclear activity, during late pregnancy when mammary cells undergo rapid raplication. During lactation, when cells in mammary gland cease to divide, only 8% of enzyme activity was in the nuclear matrix, while the majority (60-80%) of DNA polymerase alpha activity was localized in nucleoplasm. In both R3230AC tumor and mammary gland regardless of host's lactational status, the majority (60-80%) of DNA polymerase beta activity was localized in the high salt-soluble chromatin. These present data thus suggest that, regardless of host lactational status, R3230AC tumor has many cycling cells, each with a large pool of DNA polymerase alpha molecules maintaining maximal and constant replicative activity, while normal mammary gland cells have a smaller pool of DNA polymerase alpha which become primarily matrix-bound only during active cell replication during late pregnancy. A constant localization of nuclear DNA polymerase beta in chromatin in both mammary gland and the tumor suggest it is not important in mammary cell proliferation.  相似文献   

4.
NO inhibits stretch-induced MAPK activity by cytoskeletal disruption   总被引:3,自引:0,他引:3  
Mesangial cells (MC) grown on extracellular matrix protein-coated plates and exposed to cyclic strain/relaxation proliferate and produce extracellular matrix protein, providing an in vitro model of signaling in stretched MC. Intracellular transduction of mechanical strain involves mitogen-activated protein kinases, and we have shown that p42/44 mitogen-activated protein kinase (extracellular signal-regulated kinase (ERK)) is activated by cyclic strain in MC. In vivo studies show that increased production of nitric oxide (NO) in the remnant kidney limits glomerular injury without reducing glomerular capillary pressure, and we have observed that NO attenuates stretch-induced ERK activity in MC via generation of cyclic guanosine monophosphate (cGMP). Accordingly, we sought to determine whether NO affects strain-induced ERK activity after strain and how this is mediated. Strain-induced ERK activity was dependent on time and magnitude of stretch and was maximal after 10 min at -27 kilopascals. Actin cytoskeleton disruption with cytochalasin D abrogated this. The non-metabolizable cGMP analogue 8-bromo cyclic GMP (8-Br-cGMP) dose-dependently attenuated strain-induced ERK activity. Cytoskeletal stabilization with jasplakinolide prevented this inhibitory effect of 8-Br-cGMP. Cyclic strain increased nuclear translocation of phospho-ERK by immunofluorescent microscopy, again attenuated by 8-Br-cGMP. Jasplakinolide prevented the inhibitory effect of 8-Br-cGMP on activated ERK nuclear translocation after strain. Strain increased ERK-dependent AP-1 nuclear protein binding, which was attenuated by cytochalasin D and 8-Br-cGMP. These data indicate that cGMP can inhibit cyclic strain-induced ERK activity, nuclear translocation, and AP-1 nuclear protein binding. Cytoskeletal disruption leads to the same effect, whereas cytoskeleton stabilization reverses the effect of 8-Br-cGMP. Thus, NO inhibits strain-induced ERK activity by cytoskeletal destabilization.  相似文献   

5.
HeLa S3 cells were synchronized by a double thymidine block or aphidicolin treatment and the levels of nuclear matrix-bound DNA polymerase alpha activity were then measured using activated calf thymus DNA as template. The nuclear matrix was obtained by 2 M NaCl extraction and DNase I digestion of isolated nuclei incubated at 37 degrees C for 45 min prior to subfractionation. In all phases of the cell cycle 25-30% of nuclear DNA polymerase alpha activity remained matrix-bound, even when cells were in the G1 phase. No dynamic association of DNA polymerase alpha activity with the matrix was seen, at variance with previous results obtained in regenerating rat liver. The variations measured in matrix-bound activity closely followed those detected in isolated nuclei throughout the cell cycle. If nuclei were not heat-stabilized very low levels of DNA polymerase alpha activity were measured in the matrix (1-2% of total nuclear activity). Heat incubation of nuclei failed to produce any enrichment in matrix-associated newly replicated DNA, whereas the sulfhydryl cross-linking chemical sodium tetrathionate did. Therefore the results obtained after the heat stabilization procedure do not completely fit with the model that envisions the nuclear matrix as the active site where eucaryotic DNA replication takes place.  相似文献   

6.
C Jones  R T Su 《Nucleic acids research》1982,10(18):5517-5532
The nuclear matrix prepared from normal, simian virus 40 (SV40)-infected, and SV40-transformed cells contained DNA polymerase activities. Approximately 12% of the total DNA polymerase activities in isolated nuclei remained with the nuclear matrix. alpha-polymerase was the major matrix DNA polymerase activity as judged by sensitivity to various inhibitors: aphidicolin, dideoxy-TTP, and N-ethylmaleimide. Approximately 2-4 fold higher DNA polymerase activity was detected in matrices obtained from lytically infected and virus-transformed cells than that found in normal cells. In lytically infected cells, 30-50% of the matrix-bound DNA polymerase activity solubilized by sonication co-sedimented with majority of the matrix T-antigen, and was co-precipitated with anti-T sera. The results suggest that alpha-polymerase and viral T-antigen may form a functional complex in the matrix.  相似文献   

7.
As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei. Examination of the replicative dependency of these enzyme activities following partial hepatectomy revealed pre-replicative elevations which were distinct for each matrix-bound enzyme. A second late-replicative peak in DNA methylase is consistent with a role of this matrix-bound enzyme in the maintenance of the inheritable methylation pattern. Mild sonication resulted in a significant release of all of these activities except RNase H. A major portion of the matrix-solubilized DNA polymerase alpha, DNA primase, 3'-5' exonuclease, and DNA methylase activities cosedimented on sucrose gradients between approximately 8-12 S. Our results are consistent with the organization of at least a portion of these replicative enzymes into nuclear matrix-bound replicational complexes. We also propose a novel pre-replicative assembly model of the matrix-bound replicational apparatus in which DNA primase plays an initial and critical role.  相似文献   

8.
9.
Purified calpains are capable of proteolyzing several high Mr nuclear proteins and solubilizing a histone H1 kinase activity from rat liver nuclei upon exposure to 10(-6) - 10(-5) M Ca2+. Major nuclear substrates displayed apparent molecular masses of 200, 130, 120, and 60 kDa on Coomassie Blue-stained SDS-PAGE gels. The nuclear proteins and the H1 kinase were released from Triton-treated nuclei following incubation with buffer containing 0.5 M NaCl. They therefore appeared to be internal nuclear matrix proteins. The nuclear H1 kinase activity solubilized by incubation with m-calpain was eluted in the void volume of a Bio-Gel A-1.5m column, indicating an apparent mass greater than 1,500 kDa. Treatment of the calpain-solubilized kinase with 0.5 M NaCl dissociated it to a form having an apparent mass of 300 kDa (Stokes radius = 5.6 nm), suggesting that the 300-kDa (Stokes radius = 5.6 nm), nuclei by calpain treatment as a large complex containing other internal matrix proteins. Purified human erythrocyte mu-calpain was capable of proteolyzing the nuclear matrix proteins at 10(-6) M Ca2+. In contrast, human erythrocyte multicatalytic protease complex produced little cleavage of the nuclear proteins. Proteolysis of nuclear proteins by either mu-calpain or m-calpain was inhibited by calpastatin. These experiments suggest a physiologic role for the calpains in the turnover of nuclear proteins.  相似文献   

10.
A study was made of the ultrastructure and polypeptide composition of liver cell nuclear matrix of F1NZB/NZW hybrid mice imitating human systemic Lupus erythematosus. Electron microscopy reveals enlargement in fibrous lamina diameter and increase in pore complex density up to the age of 8-9 months. In the terminal stages of the disease (12-13 months of age) a gradual attenuation of the intranuclear matrix and disappearance of pore complexes is observed along with a segregation and subsequent fragmentation of residual nucleoli which results eventually in the general degradation of the nuclear matrix. 30-35 polypeptide bands with molecular weight from 200 to 10 kD are revealed in polyacrylamide gel electrophoresis of the liver cell nuclear matrix of hybrid mice. Several protein bands in the high molecular weight region of 200-150 kD are strongly enhanced, and a triplet with molecular weight 70-60 kD is distinctly visible. The results obtained are interpreted as an indication of a protecting cellular reaction against antinuclear autoantibodies in the earlier stages, and a degradation of the nuclear matrix in terminal stages of the disease. It is supposed that the electron microscopic and electrophoretic patterns of the nuclear matrix indicate an accumulation of collagenous proteins.  相似文献   

11.
R A Tubo  A M Martelli  R Berezney 《Biochemistry》1987,26(18):5710-5718
Translocation of DNA during in vitro DNA synthesis on nuclear matrix bound replicational assemblies from regenerating rat liver was determined by measuring the processivity (average number of nucleotides added following one productive binding event of the polymerase to the DNA template) of nuclear matrix bound DNA polymerase alpha with poly(dT).oligo(A)10 as template primer. The matrix-bound polymerase had an average processivity (28.4 nucleotides) that was severalfold higher than the bulk nuclear DNA polymerase alpha activity extracted during nuclear matrix preparation (8.9 nucleotides). ATP at 1 mM markedly enhanced the activity and processivity of the matrix-bound polymerase but not the corresponding salt-soluble enzyme. The majority of the ATP-dependent activity and processivity enhancement was completed by 100 microM ATP and included products ranging up to full template length (1000-1200 nucleotides). Average processivity of the net ATP-stimulated polymerase activity exceeded 80 nucleotides with virtually all the DNA products greater than 50 nucleotides. Release of nuclear matrix bound DNA polymerase alpha by sonication resulted in a loss of ATP stimulation of activity and a corresponding decrease in processivity to a level similar to that of the salt-soluble polymerase (6.8 nucleotides). All nucleoside di- and triphosphates were as effective as ATP. Stimulation of both activity and processivity by the nonhydrolyzable ATP analogues adenosine 5'-O-(3-thiotriphosphate), 5'-adenylyl imidodiphosphate, and adenosine 5'-O-(1-thiotriphosphate) further suggested that the hydrolysis of ATP is not required for enhancement to occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
This paper presents data about the presence of the NMN adenylyltransferase at the nuclear matrix level of human placenta nuclei. It was found that 40-45% of the activity (depending on the extraction procedure) referred to the total nuclear NMN adenylyltransferase was tightly associated with this subnuclear compartment. The matrices purified by two different procedures exhibited DNA, RNA and protein contents comparable with those described in literature. Extensive digestion of human placenta nuclei with DNase I was not able to solubilize the NMN adenylyltransferase activity. Therefore, the data we present are consistent with the conclusion that a part of the total nuclear NMN adenylyltransferase is associated with the nuclear matrix.  相似文献   

15.
We investigated the association of DNA polymerase and DNA primase activity with the nuclear matrix in HeLa S3 cells diluted with fresh medium after having been cultured without any medium change for 7 days. Flow cytometric analysis demonstrated that just before dilution about 85% of the cells were in the G1 phase of the cycle, whereas 8% were in the S phase. After dilution with fresh medium, 18–22 h were required for the cell population to attain a stable distribution with respect to the cell cycle. At that time, about 38% of the cells were in the S phase. DNA polymerase and DNA primase activity associated with the nuclear matrix prepared from cells just before dilution represented about 10% of nuclear activity. As judged by [3H]-thymidine incorporation and flow cytometric analysis, an increase in the number of S-phase cells was evident at least 6 h after dilution. However, as early as 2 h after dilution into fresh medium, a striking prereplicative increase of the two activitites was seen in the nuclear matrix fraction but not in cytosol or isolated nuclei. Both DNA polymerase and primase activities bound to the matrix were about 60% of nuclear activity. Overall, the nuclear matrix was the cell fraction where the highest induction (about 10-fold) of both enzymatic activities was seen at 30 h after dilution, whereas in cytosol and isolated nuclei the increase was about two- and fourfold, respectively. Typical immunofluorescent patterns given by an antibody to 5-bromodeoxyuridine were seen after dilution. These findings, which are at variance with our own previous results obtained with cell cultures synchronized by either a double thymidine block or aphidicolin exposure, strengthen the contention that DNA replication is associated with an underlying nuclear structure and demonstrate the artifacts that may be generated by procedures commonly used to synchronize cell cultures. J. Cell. Biochem. 71:11–20, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
DNA polymerase α activity was markedly higher in all nuclear subfractions, including nuclear matrix, from transplanted R3230AC mammary adenocarcinomas than in the analogous fractions from mammary gland of same tumor-bearing pregnant or lactating rats. Changes in host lactational status had no significant effect on subnuclear distribution of tumor DNA polymerase α activity, with the majority (60–75%) localized in soluble nucleoplasm and a significant amount (13–20%) retained in the nuclear matrix. In the host mammary gland, nuclear matrix-bound DNA polymerase α was highest, accounting for 48% of total nuclear activity, during late pregnancy when mammary cells undergo rapid raplication. During lactation, when cells in mammary gland cease to divide, only 8% of enzyme activity was in the nuclear matrix, while the majority (60–80%) of DNA polymerase α activity was localized in nucleoplasm. In both R3230AC tumor and mammary gland regardless of host's lactational status, the majority (60–80%) of DNA polymerase β activity was localized in the high salt-soluble chromatin. These present data thus suggest that, regardless of host lactational status, R3230AC tumor has many cycling cells, each with a large pool of DNA polymerase α molecules maintaining maximal and constant replicative activity, while normal mammary gland cells have a smaller pool of DNA polymerase α which become primarily matrix-bound only during active cell replication during late pregnancy. A constant localization of nuclear DNA polymerase β in chromatin in both mammary gland and the tumor suggest it is not important in mammary cell proliferation.  相似文献   

17.
The recent discovery of DNA sequences responsible for the specific attachment of chromosomal DNA to the nuclear skeleton (MARs/SARs) was an important step towards our understanding of the functional and structural organization of eukaryotic chromatin [Mirkovitch et al.: Cell 44:273-282, 1984; Cockerill and Garrard: Cell 44:273-282, 1986]. A most important question, however, remains the nature of the matrix proteins involved in the specific binding of the MARs. It has been shown that topoisomerase II and histone H1 were capable of a specific interaction with SARs by the formation of precipitable complexes [Adachi et al.: EMBO J8:3997-4006, 1989; Izaurralde et al.: J Mol Biol 210:573-585, 1989]. Here, applying a different approach, we were able to "visualize" some of the skeletal proteins recognizing and specifically binding MAR-sequences. It is shown that the major matrix proteins are practically the same in both salt- and LIS-extracted matrices. However, the relative MAR-binding activity of the individual protein components may be different, depending on the method of matrix preparation. The immunological approach applied here allowed us to identify some of the individual MAR-binding matrix proteins. Histone H1 and nuclear actin are shown to be not only important components of the matrix, but to be involved in a highly efficient interaction with MAR-sequences as well. Evidence is presented that proteins recognized by the anti-HMG antibodies also participate in MAR-interactions.  相似文献   

18.
Previously, we characterized the endonucleolytic activity of the nuclear matrix prepared from rat liver cryopreserved in liquid nitrogen. The enzymic activity was attributed to a 23 kDa, Mg(2+)-dependent and sequence non-specific endonuclease (p23) stably associated with the nuclear matrix. Here we show that p23 was absent from the nuclear matrix prepared from fresh liver. Instead, both ex vivo (cryopreservation), as well as in vivo-induced necrosis by repeated freezing/thawing of liver tissue in an anaesthetized rat, promoted the activation and translocation of p23 to the nuclear matrix. Considering that ex vivo and in vivo freezing/thawing of the liver were accompanied by morphological (nuclear compaction) and biochemical events (increased LDH activity, disorderly genomic DNA degradation, absence of lamin proteolysis, appearance of 62 and 50 kDa necrotic cleavage products of PARP-1) commonly observed during necrosis, and because the association of p23 with the nuclear matrix was saturable, reflecting the existence of a limited number of distinct high affinity sites on the nuclear matrix for p23, we concluded that the activation of the nuclear matrix-associated endonuclease p23 is a feature of liver cryonecrosis. Although cryonecrosis represents a typical example of acute cell damage, our results suggest that it is realized by ordered molecular events.  相似文献   

19.
Exercise has been shown to modify the level/activity of the DNA damage repair enzyme 8-oxoguanine-DNA glycosylase (OGG1) in skeletal muscle. We have studied the impact of regular physical training (8 weeks of swimming) and detraining (8 weeks of rest after an 8-week training session) on the activity of OGG1 in the nucleus and mitochondria as well as its targeting to the mitochondrial matrix in skeletal muscle. Neither exercise training nor detraining altered the overall levels of reactive species; however, mitochondrial levels of carbonylated proteins were decreased in the trained group as assessed by electron spin resonance and biochemical approaches. Importantly, nuclear OGG1 activity was increased by daily exercise training, whereas detraining reversed the up-regulating effect of training. Interestingly, training decreased the outer-membrane-associated mitochondrial OGG1 levels, whereas detraining reversed this effect. These results suggest that exercise training improves OGG1 import into the mitochondrial matrix, thereby increasing OGG1-mediated repair of oxidized guanine bases. Taken together, our data suggest that physical inactivity could impair the mitochondrial targeting of OGG1; however, exercise training increases OGG1 levels/activity in the nucleus and specific activity of OGG1 in mitochondrial compartments, thereby augmenting the repair of oxidized nuclear and mitochondrial DNA bases.  相似文献   

20.
The nuclear poly(ADP-ribose)polymerase activity of neuronal and glial cells during postnatal development of rats was studied. It was shown that the poly(ADP-ribose)polymerase activity of nuclei and nuclear matrix of neuronal cells during postnatal development of rats is increased, whereas the polymerase activity of glial cell nuclei and nuclear matrix in newborn and adult rats is higher than in 14-day-old animals. The DNA-topoisomerase II activity of neuronal nuclear matrix during the postnatal development of rats does not change, whereas the topoisomerase activity of glial nuclear matrix decreases but is always higher than the DNA-topoisomerase II activity of neuronal cell matrix during the postnatal development of rats. It is suggested that ADP-ribosylation in the nuclear matrix of neuronal cells causes the inhibition of the DNA-topoisomerase II activity of nuclear matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号