首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female’s reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male’s sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male’s sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female’s ejecting excess sperm and male size, significantly predicted paternity share in the 24 h following a mating. Contrary to expectation, proportional representation of sperm within the female’s specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum’s unique mating system and ecology.  相似文献   

2.
In earwigs of the family Anisolabididae, male intromittent organs (virgae) sometimes break off inside female sperm-storage organs (spermathecae) during mating. I examined the effects of this genital breakage on the sperm storage capacity of females using Euborellia plebeja as a representative species. When genital breakage was artificially induced in virgin females, subsequent males successfully inseminated these females. However the sperm-storage capacity of these females was limited by the presence of broken virgae in their spermathecae. In another experiment, genital breakage was experimentally induced in the spermathecae of inseminated females, and their reproductive performance was then monitored for 60 days. In all of four cases where the entire piece of the broken virga remained inside the spermatheca, females deposited fertile eggs (more than 60% hatchability). The average number of clutches, that of eggs laid, and that of hatchlings were similar to those of controls. On the other hand, females laid no eggs in the other two cases where the broken virgae protruded from the spermathecal opening. I discuss the relevance of the results to the mating system and possible removal of rival sperm, which has been reported for E. plebeja. Electronic Publication  相似文献   

3.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

4.
Summary Males of the melon flyDacus cucurbitae mate with females for 10 hours or more, usually starting at dawn and terminating at dusk. We tested the sperm-loading hypothesis (Dickinson, 1986) that males remaining with females for long periods of time benefit by numerically overwhelming the sperm of their competitors. The amount of sperm transferred to a female increased with time after mounting. The number of feamles which laid eggs at least once during experimental periods was positively correlated with mating duration. Oviposition rate was positively correlated with mating duration, as well. Egg hatchability was not influenced by mating duration. Mating duration was a major determinant of paternity when females were doubly mated with one male for 6 hours and another male for 2 hours. Females whose first matings were longer showed first male sperm predominance, while females whose second matings were longer showed last male sperm predominance. The adaptive significance of prolonged mating by male melon flies is discussed.  相似文献   

5.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

6.
Luck N  Dejonghe B  Fruchard S  Huguenin S  Joly D 《Genetica》2007,130(3):257-265
Sperm competition is expected to be a driving force in sexual selection. In internally fertilized organisms, it occurs when ejaculates from more than one male are present simultaneously within the female’s reproductive tract. It has been suggested that greater sperm size may improve the competitive ability of sperm, but studies provide contradictory results depending on the species. More recently, the role of females in the evolution of sperm morphology has been pointed out. We investigate here the male and female effects that influence sperm precedence in the giant sperm species, Drosophila bifurca Patterson & Wheeler. Females were mated with two successive males, and the paternity outcomes for both males were analyzed after determining sperm transfer and storage. We found very high values of last male sperm precedence, suggesting a strong interaction between rival sperm. However, the data also indicate high frequencies of removal of the sperm of the first male from the female reproductive tract prior to any interaction with the second male. This implies that successful paternity depends mainly on successful sperm storage. Knowing what happens to the sperm within females appears to be a prerequisite for disentangling post-copulatory sexual interactions between males and females.  相似文献   

7.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

8.
As evidence mounts that male genitalia can affect relative fertilisation success, the role that sexual selection has played in the rapid and divergent evolution of genitalia is becoming increasingly recognized. Unfortunately, the limited functional understanding of these complex structures and their interactions with the female reproductive tract often limit interpretation regarding their evolution. Here, we address this issue using the earwig Euborellia brunneri, where both the male intromittent organ and the female spermatheca are highly exaggerated in length yet structurally simple. In a double mating design, we use the sterile male technique to study how sperm precedence patterns are affected by male genital length, male age, and the size of the male sperm storage organ, the seminal vesicle. Relative fertilisation success exhibited considerable variation around modest last-male paternity. Only an interaction between first and second male genital length affected paternity, where males gained reduced paternity when preceded by rivals with longer genitalia. Longer genitalia confer defensive benefits in sperm competition by apparently depositing ejaculate deeper in the tubular spermatheca, safe from removal by rivals. Paternity similarly depended on an interaction between the ages of both males, likely mediated by sperm traits as testes size decreased with age. Seminal vesicle size showed positive allometry but did not affect paternity; instead, greater seminal vesicle size in last males expedited oviposition. The exaggerated yet relatively simple genitalia of E. brunneri facilitate an unusually clear example of post-copulatory selection on phenotypic variation in multiple reproductive traits.  相似文献   

9.
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.  相似文献   

10.
In species where females store sperm, males may try to influence paternity by the strategic placement of sperm within the female's sperm storage organ. Sperm may be mixed or layered in storage organs, and this can influence sperm use beyond a ‘fair raffle’. In some insects, sperm from different matings is packaged into discrete packets (spermatodoses), which retain their integrity in the female's sperm storage organ (spermatheca), but little is known about how these may influence patterns of sperm use under natural mating conditions in wild populations. We examined the effect of the size and position of spermatodoses within the spermatheca and number of competing ejaculates on sperm use in female dark bushcrickets (Pholidoptera griseoaptera) that had mated under unmanipulated field conditions. Females were collected near the end of the mating season, and seven hypervariable microsatellite loci were used to assign paternity of eggs laid in the laboratory. Females contained a median of three spermatodoses (range 1–6), and only six of the 36 females contained more than one spermatodose of the same genotype. Both the size and relative placement of the spermatodoses within the spermatheca had a significant effect on paternity, with a bias against smaller spermatodoses and those further from the single entrance/exit of the spermatheca. A higher number of competing males reduced the chances of siring offspring for each male. Hence, both spermatodose size and relative placement in the spermatheca influence paternity success.  相似文献   

11.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

12.
The association between social rank, mating effort, and reproductive success of male Barbary macaques (Macaca sylvanus) has been evaluated by longterm behavioral observations and subsequent paternity determination via oligonucleotide DNA fingerprinting in a large semifreeranging group. All offspring born between 1985 and 1988 that survived to at least 1 year of age (n=75) were available for paternity testing. The exclusion of all but one of the potential fathers from paternity was possible in 70 cases (93%). Mating activities were recorded using ad lib. and focal female sampling techniques. The analysis of male mating effort was restricted to the most likely days of conception. Male rank correlated significantly with male mating success in all four breeding seasons and with male reproductive success in three of the four seasons. Mating success and reproductive success also showed a significant correlation, with the exception of one breeding season, in which the proportion of males per fertilizable female was especially high. Poor mating success was almost always associated with poor reproductive success, while good mating success was less predictive for a male's actual reproductive success. This was apparently a consequence of sperm competition, resulting from the promiscuous mating system. Male mating success is not necessarily an unreliable indicator for reproductive success, provided that sufficient sample sizes are available and that conception periods can be determined. Sperm competition and other factors may weaken the association, however.  相似文献   

13.
We examined the influence of female mating history on copulation behavior and sperm release in the haplogyne spider Tetragnatha versicolor. Despite significant behavioral differences during mating, males released equivalent amounts of sperm to virgin and non-virgin females. When mating with non-virgin females, males showed twice as many pedipalp insertions and half the copulation duration as compared to virgin females; however, males were as likely to mate with non-virgin as virgin females. Even with these overt behavioral differences, males released half of the sperm contained within their pedipalps during mating, regardless of female mating history. With respect to male mating order, first or second, we suggest the numbers of sperm released would lead to an expectation of unbiased paternity. In this species, sperm release is not directly proportional to total copulationduration.  相似文献   

14.
In some spiders, a discrete portion of the male's copulatory organ (the apical sclerite) breaks off during copulation and remains in the female's reproductive tract. Apical sclerites may prevent insemination by rivals (sperm competition), stimulate females to favourably bias paternity (cryptic choice) or breakage may reflect sexual conflict over copulation duration with little direct effect on paternity. It has been assumed that any benefits of organ breakage are balanced by a large cost (male sterility) in species where males could otherwise mate multiply, but this has never been experimentally tested. We examined these ideas in the Australian redback spider (Latrodectus hasselti Thorell 1870, Araneae: Theridiidae), a species where males are functionally sterile after one normal mating. We experimentally removed sclerites and found males were able to mate, had similar copulation durations and transferred similar numbers of sperm as males with intact sclerites. Benefits of organ breakage were examined by forcing intact, rival males to inseminate the same or opposite reproductive tracts (female have paired, independent tracts in this taxon) and assessing paternity as a function of sclerite location. As predicted, apical sclerites were typically deposited at the entrance to the female's sperm storage organ, where they could physically block insemination by rivals. First male precedence was common when males inseminated the same tract and deposited sclerites at the entrance to the spermatheca, but not when sclerites were found elsewhere in the tract, or when rivals inseminated opposite tracts (where physically blocking rivals was impossible). Our data show that, in redbacks, copulatory organ breakage is not a side‐effect of sexual conflict, is unlikely to be a cue for cryptic female choice, but allows males to avoid sperm competition. Moreover, copulatory organ damage can have minimal reproductive cost for males, so assumptions of sterility after organ breakage are unjustified without supporting data.  相似文献   

15.
Sperm displacement behavior of cuttlefish (Sepia esculenta) was observed in a tank. Before ejaculation, male cuttlefish used their arms III to scrape out sperm masses attached to the buccal membranes of females. The removed sperm mass debris was directly visible and countable. Active sperm were present within the removed sperm debris, implying that the aim of this behavior is to remove competing male sperm. However, many sperm masses remained on the female buccal membrane even after the removal behavior, showing that sperm removal in S. esculenta is incomplete. The duration of sperm removal (an indicator of male investment in that process) was unaffected by the body sizes of mated pair, the duration of spermatangia placement at the current mating (for the hypothesis that the sperm removal serves to creat attachment space of spermatophores), or the estimated amount of sperm masses deposited from previous matings. Moreover, male S. esculenta performed sperm removal regardless of whether the last male to mate with the partner was himself, suggesting males remove not only the sperm of rivals but also their own. Although the number of removed sperm masses increased with the time spent on removal of sperm, male cuttlefish may shorten the duration of sperm removal to avoid the risk of mating interruption. We conclude that this time restriction would likely influence the degree of partial sperm removal in S. esculenta. A digital video image relating to the article is available at .This revised version was published online in April 2005 with corrections in the abstract.  相似文献   

16.
Post-copulatory paternity biases after female multiple mating are major constraints on both male and female reproductive systems. The outcome of paternity in certain situations is only controlled directly by male sperm stock. This was tested experimentally in the parasitoid wasp Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), in which sperm stocks are small (several hundred) and the fertilizing efficiency of stored sperm is high (the ratio of sperm stored/fertilized eggs is about 0.75). Sperm in seminal vesicles and paternity of males of different status (virgin young, virgin old, or young previously mated) were measured after female single and double mating. The amount of sperm in the seminal vesicle differed according to male status (increasing from previously mated males to old males), but there was no difference in sperm stored by females after a single mating. In double mating experiments with two males of different status, paternity increased linearly with the relative amount of sperm in seminal vesicles. Paternity distribution conforms to 'a fair raffle' of sperm from both donors following complete mixing of sperm prior to fertilization. Thus, in a female multiple mating context, male fitness depends principally on their sperm stock, which in turn depends on life history parameters, such as age and previous mating.  相似文献   

17.
The pattern of sperm predominance in doubly mated female crickets, Gryllodes supplicans, was investigated using a radiation-sterility technique. Female G. supplicans made significant use of sperm from both males in fertilizing eggs; overall, first males to mate enjoyed a small advantage, fertilizing about 60% of the offspring produced subsequent to the second mating. The combined use of the sperm of both males in fertilizing eggs occurred soon after the second mating; evidently, mixing of ejaculates within a female's spermatheca does occur. Male G. supplicans provide females with a nuptial gift, the spermatophylax, which influences the time at which a female removes the externally attached sperm-ampulla; this in turn determines the quantity of sperm that is transferred. Moreover, the degree of sperm precedence achieved by a male may be positively related to the time at which the female removes his sperm ampulla. Thus males, by feeding females, ensure not only that a sufficient number of sperm are transferred to fertilize all of a female's eggs, but also may increase the certainty of their paternity. In mating systems in which females control sperm transfer and paternity is influenced by numbers of sperm (i.e., numerical sperm competition), an increase in prezygotic investment in females may be an adaptive male response.  相似文献   

18.
The males of invertebrates from a few phyla, including arthropods, have been reported to practise traumatic insemination (TI; i.e. injecting sperm by using the copulatory organ to penetrate the female''s body wall). As all previously reported arthropod examples have been insects, there is considerable interest in whether TI might have evolved independently in other arthropods. The research reported here demonstrates the first case of TI in the arthropod subphylum Chelicerata, in particular how the genital morphology and mating behaviour of Harpactea sadistica (Řezáč 2008), a spider from Israel, has become adapted specifically for reproduction based on TI. Males have needle-like intromittent organs and females have atrophied spermathecae. In other spiders, eggs are fertilized simultaneously with oviposition, but the eggs of H. sadistica are fertilized in the ovaries (internal fertilization) and develop as embryos before being laid. Sperm-storage organs of phylogenetically basal groups to H. sadistica provide males with last male sperm priority and allow removal of sperm by males that mate later, suggesting that TI might have evolved as an adaptive strategy to circumvent an unfavourable structure of the sperm-storage organs, allowing the first male to mate with paternity advantage. Understanding the functional significance of TI gives us insight into factors underlying the evolution of the genital and sperm-storage morphology in spiders.  相似文献   

19.
Analysis of multilocus microsatellite genotypes revealed multiple paternity for all of the seven viable broods of larvae produced by kelp rockfish, Sebastes atrovirens (Jordan and Gilbert 1880), held jointly in a large aquarium tank (n = eight females and eight males). Only two of the eight experimental males were identified as fathers, and alleles not found in any of the captive males were present in all seven broods, demonstrating paternity by wild males external to the experiment. Thus, all of the females mated with one or more males prior to capture, confirming that female kelp rockfish are capable of storing sperm and controlling the overall timing of egg fertilization. These results highlight the potential for a paternal influence on larval quality through female mate choice and sperm competition.  相似文献   

20.
Post-copulatory episodes of sexual selection can be a powerful selective force influencing the reproductive success of males. In order to understand variation in male fertilisation success, we first need to consider the pattern of sperm utilisation by females following matings with more than one male. Second, we need to study those traits responsible for male success in sperm competition. Here we study both male sperm transfer characteristics as well as offspring paternity of females mated to two males in the scorpionfly Panorpa cognata. By repeatedly mating males to virgin females and interrupting copulation at defined time points, we found for all males that sperm transfer set off after approximately 40 min. During the remaining copulation, sperm transfer of individual males was continuous and with constant rate. Yet the rate of sperm transfer differed between individual males from about one sperm per minute to more than eight sperm per minute for the most successful males. In addition, we measured the fertilisation success in sperm competition of males with known sperm transfer capability. The relative number of sperm transferred by males during copulation, estimated from copulation duration and the males’ individual sperm transfer rate, explained a large proportion of variation in offspring paternity. The mode of sperm competition in this species, thus, conforms largely to a fair raffle following complete mixing of sperm prior to fertilisation. Hence, male differences in both the ability to copulate for long and of rapid sperm transfer will translate directly into differences in reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号