首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to evaluate the influence of introduced bacteria containing a contaminant degrading plasmid on the growth and survival of pine seedlings and mycorrhizosphere microbial flora in contaminated soil. The Pseudomonas fluorescens strain OS81, originally isolated from fungal hyphae in contaminated soil, was supplied with the TOL plasmid pWW0::Km (to generate OS81(pWW0::Km)) and inoculated in humus-soil microcosms with and without pine seedlings mycorrhized with Suillus bovinus. After 3 months of regular treatment with m-toluate (mTA) solutions, the introduced catabolic plasmid was found to be disseminated in the indigenous bacterial population of both mycorrhizosphere and soil uncolonized by the fungus. Transconjugants were represented by bacteria of the genera Pseudomonas and Burkholderia and their number correlated positively with the concentration of mTA applied. Indigenous mTA degrading bacteria with low similarity to Burkholderia species were also enriched in microcosms. They were mostly associated with mycorrhizal soil or fungal structures and virtually absent in microcosms without pines. The total number of Tol(+) bacteria was higher in mycorrhizospheric soil compared with bulk soil. Inoculation with P. fluorescens OS81(pWW0::Km) had a positive effect on the development of roots and fungus in contaminated soil. Both inoculation with the P. fluorescens OS81(pWW0::Km) and mTA contamination as well as the presence of mycorrhized pine roots and fungal hyphae had an effect on the microbial community structure of soil as measured by carbon source oxidation patterns. However, the impact of mTA on the microbial community was more prominent. The study indicates that an effect on plant and fungal development can be obtained by manipulating the mycorrhizosphere. Both introduction of the bacterium carrying the degradative plasmid and the plasmid itself are likely to have a positive effect not only on the organisms involved, but also on bioremediation of contaminated soil, a factor that was not directly monitored here.  相似文献   

2.
ABSTRACT

CD142 promotes cell mobility, which contributes to carcinogenesis. However, the role of CD142 on colorectal cancer (CRC) mobility is unclear. This study showed that CD142 expression increased in CRC tissues, especially in those with invasion or metastasis. The positive sorting or overexpression of CD142 promoted the invasion and migration of CRC cells. Overall, CD142 may be responsible for CRC mobility.  相似文献   

3.
Summary The yeast Kluyveromyces lactis haboring linear DNA plasmids pGKL1 and pGKL2 exhibits killer and killer-resistant phenotypes. Two new linear plasmids pK192L and pK192S were found in the weak killer mutant KUV192 induced by UV irradiation. pK192S was always accompanied by pK192L in subclones of KUV192. Both plasmids were derived from pGKL1 by deletion of the large right part of it. pK192L was 4.9 kb in size and had a palindromic structure consisting of 2.35 kb inverted terminal repetitions and a 215 base unique sequence. Analysis of denatured and renatured DNA strands suggested that pK192S was a hairpin-like form of pK192L. The pK192 plasmids were maintained only in cells haboring either pGKL1 or pGKL1S in addition to pGKL2 and competed with pGKL1 or pGKL1S for their maintenance. Since no complete ORF1 was conserved in pK192 plasmids, these results lead to the conclusion that the ORF1 gene is necessary for the replication and/or maintenance of pGKL1.  相似文献   

4.
Summary The 160 kb plasmid pAO1 from Arthrobacter oxidans (Brandsch and Decker 1984) was subcloned in Escherichia coli with the aid of the plasmid vectors pUR222 and pBR322. Screening of the recombinant clones for enzyme activity revealed that the flavoenzyme 6-hydroxy-d-nicotine oxidase (6-HDNO), one of the enzymes of the nicotine-degradative pathway in A. oxidans, is encoded on pAO1. Immunoprecipitation of 35S-methionine-labelled E. coli cells with 6-HDNO-specific antiserum and expression of recombinant plasmid DNA in E. coli maxicells revealed that 6-HDNO is made as a 52,000 dalton protein, approximately 4,500 daltons larger than 6-HDNO from A. oxidans. The 6-HDNO activity was constitutively expressed in E. coli cells, possibly from an A. oxidans promoter, as shown by subcloning of the 6-HDNO gene in pBR322, using the expression vector pKK223-3 and the promoter probe vector pCB192.  相似文献   

5.
6.
The plasmid pHT73 containing cry1Ac and tagged with an erythromycin resistance gene was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to several Bacillus cereus group strains by conjugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and phase contrast microscopy showed that the transconjugants containing plasmid pHT73 could express Cry1Ac toxin and produce bipyramidal crystalline inclusion bodies during sporulation. The study demonstrated that pHT73 could be transferred to B. thuringiensis subsp. kurstaki, several B. cereus strains and Bacillus mycoides. Under non-selective conditions, the stability of the pHT73 plasmid in the transconjugants was found to be 58.2-100% after 100 generations and 4-96% after 200 generations. The variations are mainly caused by the choice of receptor strain.  相似文献   

7.
8.
9.
In vitro culture of VFNT Cherry tomato sepals (calyx) at 16–21 °C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.  相似文献   

10.
11.
Within their natural habitat plants are subjected to a combination of different abiotic stresses, each with the potential to exacerbate the damage caused by the others. One of the most devastating stress combinations for crop productivity, which frequently occurs in the field, is drought and heat stress. In this study we conducted proteomic and metabolic analysis of Arabidopsis thaliana plants subjected to a combination of drought and heat stress. We identified 45 different proteins that specifically accumulated in Arabidopsis in response to the stress combination. These included enzymes involved in reactive oxygen detoxification, malate metabolism, and the Calvin cycle. The accumulation of malic enzyme during the combined stress corresponded with enhanced malic enzyme activity, a decrease in malic acid, and lower amounts of oxaloacetate, suggesting that malate metabolism plays an important role in the response of Arabidopsis to the stress combination. Cytosolic ascorbate peroxidase 1 (APX1) protein and mRNA accumulated during the stress combination. When exposed to heat stress combined with drought, an APX1-deficient mutant (apx1) accumulated more hydrogen peroxide and was significantly more sensitive to the stress combination than wild type. In contrast, mutants deficient in thylakoid or stromal/mitochondrial APXs were not more sensitive to the stress combination than apx1 or wild type. Our findings suggest that cytosolic APX1 plays a key role in the acclimation of plants to a combination of drought and heat stress.  相似文献   

12.
Limited work has been done to assess the bioremediation potential of transfer of plasmid-borne degradative genes from introduced to indigenous organisms in the environment. Here we demonstrate the transfer by conjugation of the catabolic plasmid pJP4, using a model system with donor and recipient organisms. The donor organism was Alcaligenes eutrophus JMP134 and the recipient organism was Variovorax paradoxus isolated from a toxic waste site. Plasmid pJP4 contains genes for mercury resistance and 2,4-dichlorophenoxyacetic (2,4-D) acid degradation. A transfer frequency of approximately 1/10(3) donor and recipient cells (parent cells) was observed on solid agar media, decreasing to 1/10(5) parent cells in sterile soil and finally 1/10(6) parent cells in 2,4-D-amended, nonsterile soil. Presumptive transconjugants were confirmed to be resistant to Hg, to be capable of degrading 2,4-D, and to contain a plasmid of size comparable to that of pJP4. In addition, we confirmed the transfer through PCR amplifications of the tfdB gene. Although transfer of pJP4 did occur at a high frequency in pure culture, the rate was significantly decreased by the introduction of abiotic (sterile soil) and biotic (nonsterile soil) stresses. An evaluation of the data from this model system implies that the reliance on plasmid transfer from a donor organism as a remediative strategy has limited potential.  相似文献   

13.
Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.  相似文献   

14.
15.
16.
When the alpha and beta chains were separated from human oxyhemoglobin (HbO(2)), each individual chain was oxidized easily to the ferric form, their rates being almost the same with a very strong acid-catalysis. In the HbO(2) tetramer, on the other hand, both chains become considerably resistant to autoxidation over a wide range of pH values (pH 5-11). Moreover, HbA showed a biphasic autoxidation curve containing the two rate constants, i.e. k(f) for the fast oxidation due to the alpha chains, and k(s) for the slow oxidation to the beta chains. The k(f)/k(s) ratio increased from 3.2 at pH 7.5-7.3 at pH 5.8, but became 1 : 1 at pH values higher than 8.5. In the present work, we used the valency hybrid tetramers such as (alpha(3+))2(beta O(2))(2) and (alpha O(2)(2)(beta(3+))(2), and demonstrated that the autoxidation rate of either the alpha or beta chains (when O2- ligated) is independent of the valency state of the corresponding counterpart chains. From these results, we have concluded that the formation of the alpha 1 beta 1 or alpha 2 beta 2 contact suppresses remarkably the autoxidation rate of the beta chain and thus plays a key role in stabilizing the HbO(2) tetramer. Its mechanistic details were also given in terms of a nucleophilic displacement of O(2)(-) from the FeO(2) center, and the emphasis was placed on the proton-catalyzed process performed by the distal histidine residue.  相似文献   

17.
Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.  相似文献   

18.
Reorganization of the cytoskeleton is necessary for apoptosis, proliferation, migration, development and tissue repair. However, it is well established that mutations or overexpression of key regulators contribute to the phenotype and progression of several pathologies such as cancer. For instance, c-src mutations and the overexpression of FAK have been implicated in the invasive and metastatic process, suggesting that components of the motility system may represent a new class of therapeutic targets. Over the last several years, we and others have established distinct roles for the Ste20-like kinase SLK, encompassing apoptosis, growth, motility and development. Here, we review the SLK field from its initial cloning to the most recent findings from our laboratory. We summarize the various roles of SLK and the biochemical mechanisms that regulate its activity. These various findings reveal very complex functions and pattern of regulation for SLK in development and cancer, making it a potential therapeutic target.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号