首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A series of extraction procedures were applied to avian nuclei which allowed us to define three types of association of v-myc- and c-myc-encoded proteins with nuclei: (i) a major fraction (60 to 90%) which is retained in DNA- and RNA-depleted nuclei after low- and high-salt extraction, (ii) a small fraction (1%) released during nuclease digestion of DNA in intact nuclei in the presence of low-salt buffer, and (iii) a fraction of myc protein (less than 10%) extractable with salt or detergents and found to have affinity for both single- and double-stranded DNA. Immunofluorescence analysis with anti-myc peptide sera on cells extracted sequentially with nucleases and salts confirmed the idea that myc proteins were associated with a complex residual nuclear structure (matrix-lamin fraction) which also contained avian nuclear lamin protein. Dispersal of myc proteins into the cytoplasm was found to occur during mitosis. Both c-myc and v-myc proteins were associated with the matrix-lamin, suggesting that the function of myc may relate to nuclear structural organization.  相似文献   

4.
5.
6.
Multiple factors are involved in the development and regulation of sensory innervation in skin. The findings we report here suggest that brain-derived neurotrophic factor (BDNF)-mediated inhibition may play an important role in determining the pattern of sensory innervation in avian skin. In birds, cutaneous innervation is restricted to dermis, where axons form a ring of innervation around the base of each feather. Here we show that both BDNF message and protein are more abundant in avian epidermis than dermis when innervation is being established; the BDNF in dermis is localized to feather buds. In vitro, BDNF caused growth cones of NGF-dependent dorsal root ganglion neurons to collapse. Similarly, outgrowth of neurites toward BDNF-secreting fibroblasts was inhibited. The inhibitory effects of BDNF appear to be mediated by the low-affinity p75 neurotrophin receptor, rather than a trk receptor. Thus, the distribution of BDNF in embryonic avian skin and the inhibitory effects of BDNF on cutaneous neurites in vitro suggest that BDNF may be important in restricting axons from entering the epidermis and the core of feather buds during development in vivo.  相似文献   

7.
The c-myc oncogene and its viral counterpart v-myc encode phosphoproteins which have been located within cell nuclei, excluding nucleoli. We have expressed the c-myc gene under the simian virus 40 early promoter and studied the distribution of its protein product in transient expression assays in COS, HeLa, and 293 cells. We found three distinct patterns of c-myc immunofluorescence in the transfected cells: one-third of the c-myc-positive cells displayed a diffuse nuclear distribution, and in two-thirds of the cells the c-myc fluorescence was accumulated either in small amorphous or in large multilobed phase-dense nuclear structures. Unexpectedly, these structures also stained for the HSP70 heat shock protein in both heat-shocked and untreated cells. Our results indicate that both transient and stable overexpression of either the c-myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein. Interestingly, the closely related N-myc protein does not stimulate substantial nuclear expression of the HSP70 protein. Studies with chimeric myc proteins revealed that polypeptide sequences encoded by the second exon of c-myc are involved in colocalization with HSP70.  相似文献   

8.
Isolation and characterization of the human cellular myc gene product   总被引:6,自引:0,他引:6  
P Beimling  T Benter  T Sander  K Moelling 《Biochemistry》1985,24(23):6349-6355
Antibodies against the product of the human cellular myc gene (c-myc) were prepared against a bacterially expressed human c-myc protein by inserting the ClaI/BclI fragment of the human c-myc DNA clone in an expression vector derived from pPLc24. These antibodies cross-react with viral-coded myc (v-myc) proteins from MC29 and OK10 viruses. Furthermore, IgGs specific for synthetic peptides, corresponding to the 12 carboxy-terminal amino acids of the human c-myc gene and 16 internal amino acids, were isolated. By use of the various myc-specific antisera or IgGs, a protein of Mr 64 000 was detected in several human tumor cell lines including Colo320, small cell cancer of the lung (417d), HL60, Raji, and HeLa. This protein is larger than the corresponding v-myc or chicken c-myc proteins from avian virus transformed cells or avian bursa lymphoma cells (RP9), both of which are proteins of Mr 55 000. The human c-myc protein is located in the nucleus of Colo320 cells, exhibits a half-life of about 15 min, and is expressed at significantly lower levels than the viral protein. The human c-myc protein was enriched about 3000-fold from Colo320 cells using c-myc-specific IgG coupled to Sepharose beads. The protein binds to double-stranded DNA in vitro, a reaction that can be inhibited to more than 90% by c-myc specific IgG.  相似文献   

9.
We have prepared antisera against synthetic peptides corresponding to the C-terminal region of the avian and human myc oncogene coding sequences. Immunoprecipitates from avian and human cells show two major proteins which, by the criteria of hybrid-selected translation, transfection, and peptide-blocking assays, are the c-myc protein products. These proteins are phosphorylated nuclear proteins which are tightly bound to the nuclear matrix-lamin and which have a short half-life. Analysis of avian and human lymphoma cell lines containing rearranged c-myc alleles show significant changes in the ratio of the two proteins although only the avian lymphomas have increased quantities of c-myc protein.  相似文献   

10.
11.
The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.  相似文献   

12.
The present study extends our previous data, showing that the v-myc oncogene induces heart tumors and skin anomalies in young avian embryos [Saule et al., Proc. Natl. Acad. Sci. USA 84, 7982–7986 (1987)]. We now report that the target cells which become transformed are the same, whether the MC29 retrovirus is injected at E3 in various sites of the embryo (coelom, heart, brain, lateral plate mesoderm) or deposited on the embryo. Furthermore we confirm, in the quail, the time-specific pattern previously observed in the chick. In the quail, the incidence of heart tumors falls from 100% to 28% when injection is delayed from E3 to E4. By contrast, the incidence of skin anomalies rises from 30% to 64% when injection is delayed from E3 to E4. The skin defect, which consists of the presence of bell-shaped cornified feathers, could be assigned to hyperkeratinization of the epidermis. Both the dermis and the epidermis displayed hyperproliferation, whereas skin muscle hypertrophy during the embryonic period could not be confirmed. The presence of myc gene products was investigated using an antibody that recognizes both the c- and v-myc proteins. In the skin of control embryos, nuclei were well stained at E12–E13. At E14 the signal had disappeared. In abnormal skin patches from infected embryos, the antibody still marked heavily epidermal and dermal nuclei at E18. Finally we injected MC29 through the chorioallantoic vein in E10 chickens. No tumors were found during embryonic life, but 81% of the chickens developed tumors of hemopoietic or endothelial origin from the 14th posthatching day onwards. Studies of MC29 integration sites demonstrated that these tumors were derived from only a few transformed cells. Thus, contrasting with in vitro experiments, in vivo this virus has a restricted number of targets varying with the time of injection.  相似文献   

13.
14.
15.
beta-catenin signaling can initiate feather bud development.   总被引:10,自引:0,他引:10  
Intercellular signaling by a subset of Wnts is mediated by stabilization of cytoplasmic beta-catenin and its translocation to the nucleus. Immunolocalization of beta-catenin in developing chick skin reveals that this signaling pathway is active in a dynamic pattern from the earliest stages of feather bud development. Forced activation of this pathway by expression of a stabilized beta-catenin in the ectoderm results in the ectopic formation of feather buds. This construct is sufficient to induce bud formation since it does so both within presumptive feather tracts and in normally featherless regions where tract-specific signals are absent. It is also insensitive to the lateral inhibition that mediates the normal spacing of buds and can induce ectopic buds in interfollicular skin. However, additional patterning signals cooperate with this pathway to regulate gene expression within domains of stabilized beta-catenin expression. Localized activation of this pathway within the bud as it develops is required for normal morphogenesis and ectopic activation of the pathway leads to abnormally oriented buds and growths on the feather filaments. These results suggest that activation of the beta-catenin pathway initiates follicle development in embryonic skin and plays important roles in the subsequent morphogenesis of the bud.  相似文献   

16.
17.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

18.
19.
20.
We report the production of a monoclonal antibody (MAb 526) that recognizes a novel, developmentally regulated nuclear protein expressed in neurons throughout the rat nervous system. Analysis of whole brain and cell nuclear extracts by SDS-PAGE and immunoblotting determined that MAb 526 recognizes a single nuclear protein (np) of apparent molecular weight 42 kD, designated np526, as well as a slightly larger (ca. 44 kD) cytoplasmic protein. Light microscopic immunocytochemistry showed np526 to be present in neurons of all types throughout the central and peripheral nervous systems. Nuclei of both fibrous and protoplasmic astrocytes were also immunoreactive, but oligodendrocyte nuclei were negative. Positive, but highly variable immunocytochemical staining of nonneural cell nuclei in a variety of other tissues was also observed. Electron microscopic (EM) immunocytochemistry using pre-embedding peroxidase methods revealed that np526 is associated with euchromatin or with the edges of condensed chromatin bundles in neurons, indicating that it is likely to be a chromosomal protein. Most interestingly, the expression of np526 was found to be developmentally regulated in brain. Immunocytochemical analysis of the developing cerebral cortex from embryonic day (E) 16 to postnatal day (P) 4 and cerebellum from P4 to P18 revealed that np526 first appears in central neurons following the cessation of mitosis and that the intensity of nuclear staining increases during subsequent neuronal maturation. To our knowledge, np526 is the first presumptive chromosomal protein whose expression has been precisely correlated with the early postmitotic differentiation of mammalian neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号