首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G S Dahler  F Barras    N T Keen 《Journal of bacteriology》1990,172(10):5803-5815
A 14-kilobase BamHI-EcoRI DNA fragment cloned from Erwinia chrysanthemi EC16 contained a gene encoding a metalloprotease inhibitor as well as three tandem prt genes encoding metalloproteases. The prt genes were separated from the inhibitor gene by a ca. 4-kilobase region that was necessary for extracellular secretion of the proteases. When individually subcloned downstream from vector promoters, the three prt genes each led to substantial extracellular secretion of the proteases by Escherichia coli cells, provided that the 4-kilobase required region was supplied in cis or trans. One of the protease structural genes, prtC, was sequenced and had high homology to a metalloprotease gene previously described from Serratia species as well as to the prtB gene of E. chrysanthemi B374. Marker exchange mutants of E. chrysanthemi EC16 defective in production of one or all of the extracellular proteases were not impaired in virulence on plant tissue.  相似文献   

2.
A 5.5 kb DNA fragment carrying the functions necessary for the specific secretion of the extracellular metalloproteases B and C produced by the Gram-negative phytopathogenic bacterium Erwinia chrysanthemi has been sequenced. The fragment contains four transcribed and translated genes: inh, which codes for a protease inhibitor and is not required for protease secretion, and prtD, prtE and prtF, which share significant homology with the hlyB, hlyD and tolC genes required for alpha-haemolysin secretion in Escherichia coli. Mutations in any of the three prt genes abolish protease secretion. The prtD and prtE products (60 and 50 kd) contain at least one hydrophobic segment and the prtF gene product contains a signal sequence.  相似文献   

3.
The extracellular alkaline protease produced by Pseudomonas aeruginosa is secreted by a specific pathway, independent of the pathway used by most of the other extracellular proteins of this organism. Secretion of this protease is dependent on the presence of several genes located adjacent to the apr gene. Complementation studies have shown that PrtD, E, and F, the three secretion functions for Erwinia chrysanthemi proteases B and C (Létoffé et al., 1990), can mediate the secretion of the alkaline protease by Escherichia coli. The secretion functions involved in alpha-haemolysin secretion in E. coli (hlyB, hlyD, tolC) can also be used to complement alkaline protease secretion by E. coli, although less efficiently. These data indicate that protease secretion mechanisms in Pseudomonas and Erwinia are very similar and are homologous to that of E. coli alpha-haemolysin.  相似文献   

4.
The extracellular lipase of Serratia marcescens Sr41, lacking a typical N-terminal signal sequence, is secreted via a signal peptide-independent pathway. The 20-kb SacI DNA fragment which allowed the extracellular lipase secretion was cloned from S. marcescens by selection of a phenotype conferring the extracellular lipase activity on the Escherichia coli cells. The subcloned 6.5-kb EcoRV fragment was revealed to contain three open reading frames which are composed of 588, 443, and 437 amino acid residues constituting an operon (lipBCD). Comparisons of the deduced amino acid sequences of the lipB, lipC, and lipD genes with those of the Erwinia chrysanthemi prtDEC, prtEEC, and prtFEC genes encoding the secretion apparatus of the E. chrysanthemi protease showed 55, 46, and 42% identity, respectively. The products of the lipB and lipC genes were 54 and 45% identical to the S. marcescens hasD and hasE gene products, respectively, which were secretory components for the S. marcescens heme-binding protein and metalloprotease. In the E. coli DH5 cells, all three lipBCD genes were essential for the extracellular secretion of both S. marcescens lipase and metalloprotease proteins, both of which lack an N-terminal signal sequence and are secreted via a signal-independent pathway. Although the function of the lipD gene seemed to be analogous to those of the prtFEC and tolC genes encoding third secretory components of ABC transporters, the E. coli TolC protein, which was functional for the S. marcescens Has system, could not replace LipD in the LipB-LipC-LipD transporter reconstituted in E. coli. These results indicated that these three proteins are components of the device which allows extracellular secretion of the extracellular proteins of S. marcescens and that their style is similar to that of the PrtDEF(EC) system.  相似文献   

5.
The plant pathogenic enterobacterium Erwinia chrysanthemi EC16 secretes several extracellular, plant cell wall-degrading enzymes, including pectate lyase isozyme PelE. Secretion kinetics of 35S-labeled PelE indicated that the precursor of PelE was rapidly processed by the removal of the amino-terminal signal peptide and that the resulting mature PelE remained cell bound for less than 60 s before being secreted to the bacterial medium. PelE-PhoA (alkaline phosphatase) hybrid proteins generated in vivo by TnphoA insertions were mostly localized in the periplasm of E. chrysanthemi, and one hybrid protein was observed to be associated with the outer membrane of E. chrysanthemi in an out gene-dependent manner. A gene fusion resulting in the substitution of the beta-lactamase signal peptide for the first six amino acids of the PelE signal peptide did not prevent processing or secretion of PelE in E. chrysanthemi. When pelE was overexpressed, mature PelE protein accumulated in the periplasm rather than the cytoplasm in cells of E. chrysanthemi and Escherichia coli MC4100 (pCPP2006), which harbors a functional cluster of E. chrysanthemi out genes. Removal of the signal peptide from pre-PelE was SecA dependent in E. coli MM52 even in the presence of the out gene cluster. These data indicate that the extracellular secretion of pectic enzymes by E. chrysanthemi is an extension of the Sec-dependent pathway for general export of proteins across the bacterial inner membrane.  相似文献   

6.
The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB , codes for a 433-amino-acid protein. The PemB N-terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB -like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non-ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.  相似文献   

7.
8.
The Serratia marcescens metalloprotease (protease SM) belongs to a family of proteins secreted from gram-negative bacteria by a signal peptide-independent pathway which requires a specific transporter consisting of three proteins: two in the inner membrane and one in the outer membrane. The prtDSM and prtESM genes encoding the two S. marcescens inner membrane components were cloned and expressed in Escherichia coli. Their nucleotide sequence revealed high overall homology with the two analogous inner membrane components of the Erwinia chrysanthemi protease secretion apparatus and lower, but still significant, homology with the two analogous inner membrane components of the E. coli hemolysin transporter. When expressed in E. coli, these two proteins, PrtDSM and PrtESM, allowed the secretion of protease SM only in the presence of TolC protein, the outer membrane component of the hemolysin transporter.  相似文献   

9.
The secretion signal of extracellular metalloprotease B that is secreted without a signal peptide by the Gram-negative phytopathogenic bacterium Erwinia chrysanthemi is shown by deletion and gene fusion analyses to be located within the last 40 C-terminal amino acids. Secretion of a peptide containing only this region of the protease requires the same three secretion factors (PrtD, PrtE, and PrtF) that were previously shown to be required for the secretion of the full-length protease. This secretion signal can also be recognized, albeit inefficiently, by the analogous secretion machinery of alpha-hemolysin, another protein with a C-terminal secretion signal that is secreted by some strains of the Gram-negative bacterium Escherichia coli. The secretion signal was fused to an internal 200-amino acid fragment from the sequence of the cytoplasmic protein amylomaltase to promote its specific secretion by the protease secretion pathway. Almost exactly the same sequence as that identified as the protease B secretion signal was also found at the C terminus of metalloprotease C that is also secreted by E. chrysanthemi.  相似文献   

10.
The chemical mutagen ethylmethanesulphonate (EMS) has been used to generate mutants of Erwinia carotovora subspecies carotovora which are defective in the secretion of pectinases (Pel) and cellulases (Cel) but unaltered for protease (Prt) secretion. Such mutants, called Out? still synthesize Pel and Cel but these enzymes accumulate within the periplasm. Cosmid clones carrying wild-type E. carotovra ssp. carotovora DNA, identified by their ability to restore the Out+ phenotype when transferred to some Out? mutants, were classified into six complementation groups using cosmids and cosmid derivatives. Analysis of the nucleotide sequence of a 12.7 kb DNA fragment, encompassing complementing cosmid inserts, revealed a coding capacity for 13 potential open reading frames (ORFs), and these were designated outC-outO. Some of the out gene products were visualized using a T7 gene 10 expression system. The predicted Out proteins are highly similar to components of extracellular enzyme secretion systems from a diverse range of eubacteria including Erwinia chrysanthemi, Klebsiella oxytoca, Aeromonas hydrophila, Pseudomonas aeruginosa and Xanthomonas campestris. Lower levels of similarity exist between Ecc Out proteins and components of macromolecular trafficking systems from Bacillus subtilis, Haemophilus influenzae, Agrobacterium tumefaciens, Yersinia pestis and a protein involved in the morphogenesis of filamentous bacteriophages such as M13.  相似文献   

11.
Mutants of bacteria belonging the genus Erwinia (Erwinia chrysanthemi and Erwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI+ allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that the ptsI and ptsH genes of E. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas the ptsH gene is located at 175 min. Sequencing of a portion of the E. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I.  相似文献   

12.
The phytopathogenic bacterium Erwinia chrysanthemi produces a group of pectolytic enzymes able to depolymerise the pectic compounds in plant cell walls. The resulting tissue maceration is known as soft rot disease. The degraded pectin products are transported by 2-keto-3-deoxygluconate permease into the bacterial cell, where they serve as carbon and energy sources. This H+ coupled transport system is encoded by the kdgT gene; we report the nucleotide sequence of kdgT. It is encoded by an open reading frame (ORF) of 1194 bp, which is preceded by an Escherichia coli-type promoter region. The ORF encodes a protein with 398 amino acid (aa) residues and a predicted Mr of 48,550. As would be expected for a membrane protein, it is very hydrophobic, containing 63% nonpolar aa. However, the kdgT gene has no apparent evolutionary relationship to other genes encoding sugar transport proteins, such as lacY, melB or the E. coli citrate transport gene. Southern hybridization experiments indicate a strong homology between the Er. chrysanthemi and E. coli kdgT genes; there is also a second region on the E. coli chromosome with homology to kdgT. The kdgT gene is located near the ade-377 marker on the Er. chrysanthemi chromosome (equivalent to the region between 20 and 30 min in E. coli), whereas the E. coli kdgT gene is located at 88 min. Thus, these two enterobacteria show some significant differences in their genomic organization.  相似文献   

13.
F Duong  A Lazdunski  B Cami  M Murgier 《Gene》1992,121(1):47-54
A genetic locus implicated in the synthesis and secretion of alkaline protease (APR) in Pseudomonas aeruginosa has been previously described [Guzzo et al., J. Bacteriol. 172 (1990) 942-948]. The nucleotide sequence of the DNA fragment encoding these functions was determined and revealed the existence of five open reading frames: aprA, the structural gene encoding APR; aprI, which encodes a protease inhibitor; and aprD, aprE, aprF whose products are involved in protease secretion. The AprD, AprE and AprF proteins share significant homology with proteins implicated in secretion of Erwinia chrysanthemi proteases and Escherichia coli alpha-haemolysin. These results provide further evidence for the existence of a specialized secretory system widespread among Gram- bacteria.  相似文献   

14.
15.
16.
17.
A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-5 alpha. The gene was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotuberculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the pelY gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature PLY protein accumulated largely in the periplasmic space of E. coli. The pI of PLY produced in E. coli cells was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about 1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence similarity to the pel genes thus far sequenced from Erwinia spp.  相似文献   

18.
19.
Escherichia coli B has been engineered as a biocatalyst for the conversion of lignocellulose into ethanol. Previous research has demonstrated that derivatives of E. coli B can produce high levels of Erwinia chrysanthemi endoglucanase (encoded by celZ) as a periplasmic product and that this enzyme can function with commercial fungal cellulase to increase ethanol production. In this study, we have demonstrated two methods that improve celZ expression in E. coli B. Initially, with a low-copy-number vector, two E. coli glycolytic gene promoters (gap and eno) were tested and found to be less effective than the original celZ promoter. By screening 18,000 random fragments of Zymomonas mobilis DNA, a surrogate promoter was identified which increased celZ expression up to sixfold. With this promoter, large polar inclusion bodies were clearly evident in the periplasmic space. Sequencing revealed that the most active surrogate promoter is derived from five Sau3A1 fragments, one of which was previously sequenced in Z. mobilis. Visual inspection indicated that this DNA fragment contains at least five putative promoter regions, two of which were confirmed by primer extension analysis. Addition of the out genes from E. chrysanthemi EC16 caused a further increase in the production of active enzyme and facilitated secretion or release of over half of the activity into the extracellular environment. With the most active construct, of a total of 13,000 IU of active enzyme per liter of culture, 7,800 IU was in the supernatant. The total active endoglucanase was estimated to represent 4 to 6% of cellular protein.  相似文献   

20.
Twenty of the twenty-two MudII1734 insertions impairing the chrysobactin iron-assimilation system of Erwinia chrysanthemi 3937 were localized to a 50 kbp genomic insert contained in the R-prime plasmid, R'4 (Enard et al., 1988). Using the conjugative plasmid pULB110 (RP4::mini-Mu) and the generalized transducing phage phi EC2, we located this iron-transport region and the two unlinked mutations on the chromosome linkage map. Chrysobactin is a catechol-type siderophore and, as we have previously observed with the entA locus of Escherichia coli, the E. chrysanthemi-derived R'4 was found to complement E. coli entB and entE mutations. A 2.9 kb EcoRi and a 4.8 kb BamHI fragment in the R'4 sharing homology with the E. coli entCEBAP15 operon DNA were subcloned. These fragments were used as DNA/DNA hybridization probes to screen a wild-type gene library, yielding a recombinant cosmid (pEC7) able to complement mutations disrupting the 2,3-dihydroxybenzoic acid biosynthetic pathway in both Erwinia and Escherichia spp. as well as the E. coli entE mutation. Physical mapping of the genomic MudII1734 insertions corresponding to these mutations led to the identification of a cluster of genes confined to a DNA sequence of about 10 kb required for both biosynthetic and receptor functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号