首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Equisetum arvense L. (Equisetaceae-horsetail) accumulates various flavones and flavonols in infertile shoot. Enzyme assays conducted with crude extracts of the green tissue revealed chalcone synthase activity and also three further activities assigned to flavonoid biosynthesis and identified as flavone synthase I, flavanone 3β-hydroxylase and flavonol synthase. The latter three activities were characterized as soluble, 2-oxoglutarate-dependent dioxygenases by their typical cofactor requirements and peculiar inhibition. Notably, this is the first report of flavone synthase I which had been considered to be restricted solely to species of the Apiaceae from a distant plant taxon.  相似文献   

2.
Recently, recombinant Streptomyces venezuelae has been established as a heterologous host for microbial production of flavanones and stilbenes, a class of plant-specific polyketides. In the present work, we expanded the applicability of the S. venezuelae system to the production of more diverse plant polyketides including flavones and flavonols. A plasmid with the synthetic codon-optimized flavone synthase I gene from Petroselium crispum was introduced to S. venezuelae DHS2001 bearing a deletion of the native pikromycin polyketide synthase gene, and the resulting strain generated flavones from exogenously fed flavanones. In addition, a recombinant S. venezuelae mutant expressing a codon-optimized flavanone 3beta-hydroxylase gene from Citrus siensis and a flavonol synthase gene from Citrus unshius also successfully produced flavonols.  相似文献   

3.
Lee YJ  Kim JH  Kim BG  Lim Y  Ahn JH 《BMB reports》2008,41(1):68-71
Flavones are synthesized from flavanones through the action of flavone synthases (FNSs). There are two FNSs, FNS I and II. FNS I is a soluble dioxygenase present in members of the Apiaceae family and FNS II is a membrane bound cytochrome P450 enzyme that has been identified in numerous plant species. In this study, we cloned OsFNS I-1 from rice by RTPCR, expressed it in E. coli, and purified the recombinant protein. By NMR analysis, we found that OsFNS I-1 converted the flavanone (2S)-naringenin into the flavone, apigenin. Moreover, we found that the cofactors oxoglutarate, FeSO(4), ascorbate and catalase are required for this reaction. OsFNS I-1 encodes a flavone synthase I. This is the first type I FNS I found outside of the Apiaceae family.  相似文献   

4.
Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).  相似文献   

5.
Cloning of parsley flavone synthase I   总被引:7,自引:0,他引:7  
A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin.  相似文献   

6.
Flavone synthase I, a soluble 2-oxoglutarate-dependent dioxygenase catalyzing the oxidation of flavanones to flavones in several Apiaceae species, was induced in parsley cell cultures by continuous irradiation with ultraviolet/blue light for 20 h. The enzyme was extracted from these cells and purified by a revised purification protocol including the fractionation on hydroxyapatite, Fractogel EMD DEAE, and Mono Q anion exchangers, which resulted in an apparently homogeneous flavone synthase at approximately 10-fold higher yield as compared to the previous report. The homogeneous enzyme was employed to raise an antiserum in rabbit for partial immunological characterization. The specificity of the polyclonal antibodies was demonstrated by immunotitration and Western blotting of the crude ammonium sulfate-fractionated enzyme as well as of the enzyme at various stages of the purification. High titer cross-reactivity was observed toward flavone synthase I, showing two bands in the crude extract corresponding to molecular weights of 44 and 41 kDa, respectively, while only the 41 kDa was detected on further purification. The polyclonal antiserum did not cross-react with recombinantly expressed flavanone 3beta-hydroxylase from Petunia hybrida or flavonol synthase from Citrus unshiu, two related 2-oxoglutarate-dependent dioxygenases involved in the flavonoid pathway.  相似文献   

7.
8.
In soybean (Glycine max L.), pathogen attack induces the formation of glyceollin-type phytoalexins. The biosynthetic key enzyme is a reductase which synthesizes 4,2', 4'-trihydroxychalcone in co-action with chalcone synthase. Screening of a soybean cDNA library from elicitor-induced RNA in lambda gt11 yielded two classes of reductase-specific clones. The deduced proteins match to 100% and 95%, respectively, with 229 amino acids sequenced in the purified plant protein. Four clones of class A were expressed in Escherichia coli, and the proteins were tested for enzyme activity in extracts supplemented with chalcone synthase. All were active in 4,2',4'-trihydroxychalcone formation, and the quantification showed that shorter lengths of the cDNAs at the 5' end correlated with progressively decreasing enzyme activities. Genomic blots with DNA from plants capable of 4,2',4'-trihydroxychalcone synthesis revealed related sequences in bean (Phaseolus vulgaris L.) and peanut (Arachis hypogaea L.), but not in pea (Pisum sativum L.). No hybridization was observed with parsley (Petroselinum crispum) and carrot (Daucus carota) which synthesize other phytoalexins. The reductase protein contains a leucine-zipper motif and reveals a marked similarity with other oxidoreductases most of which are involved in carbohydrate metabolism.  相似文献   

9.
Flavones and flavone synthases   总被引:14,自引:0,他引:14  
Martens S  Mithöfer A 《Phytochemistry》2005,66(20):2399-2407
Within the secondary metabolite class of flavonoids which consist of more than 9000 known structures, flavones define one of the largest subgroups. Their natural distribution is demonstrated for almost all plant tissues. Various flavone aglyca and their O- or C-glycosides have been described in the literature. The diverse functions of flavones in plants as well as their various roles in the interaction with other organisms offer many potential applications, not only in plant breeding but also in ecology, agriculture and human nutrition and pharmacology. In this context, the antioxidative activity of flavones, their use in cancer prevention and treatment as well as the prevention of coronary heart disease should be emphasized. The therapeutic potential of flavones makes these compounds valuable targets for drug design, including recombinant DNA approaches. The biosynthesis of flavones in plants was found to be catalyzed by two completely different flavone synthase proteins (FNS), a unique feature within the flavonoids. The first, FNS I, a soluble dioxygenase, was only described for members of the Apiaceae family so far. The second, FNS II, a membrane bound cytochrome P450 enzyme, has been found in all other flavone accumulating tissues. This phenomenon is particularly of interest from the evolutionary point of view concerning the flavone biosynthesis and functions in plants. Recently, FNS I and FNS II genes have been cloned from a number of plant species. This now enables detailed biochemical and molecular characterizations and also the development of direct metabolic engineering strategies for modifications of flavone synthesis in plants to improve their nutritional and/or biopharmaceutical value.  相似文献   

10.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4'-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

11.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4′-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

12.
Chalcone synthases (CHSs) and acridone synthases (ACSs) belong to the superfamily of type III polyketide synthases (PKSs) and condense the starter substrate 4-coumaroyl-CoA or N-methylanthraniloyl-CoA with three malonyl-CoAs to produce flavonoids and acridone alkaloids, respectively. ACSs which have been cloned exclusively from Ruta graveolens share about 75-85% polypeptide sequence homology with CHSs from other plant families, while 90% similarity was observed with CHSs from Rutaceae, i.e., R. graveolens, Citrus sinensis and Dictamnus albus. CHSs cloned from many plants do not accept N-methylanthraniloyl-CoA as a starter substrate, whereas ACSs were shown to possess some side activity with 4-coumaroyl-CoA. The transformation of an ACS to a functional CHS with 10% residual ACS activity was accomplished previously by substitution of three amino acids through the corresponding residues from Ruta-CHS1 (Ser132Thr, Ala133Ser and Val265Phe). Therefore, the reverse triple mutation of Ruta-CHS1 (mutant R2) was generated, which affected only insignificantly the CHS activity and did not confer ACS activity. However, competitive inhibition of CHS activity by N-methylanthraniloyl-CoA was observed for the mutant in contrast to wild-type CHSs. Homology modeling of ACS2 with docking of 1,3-dihydroxy-N-methylacridone suggested that the starter substrates for CHS or ACS reaction are placed in different topographies in the active site pocket. Additional site specific substitutions (Asp205Pro/Thr206Asp/His207Ala or Arg60Thr and Val100Ala/Gly218Ala, respectively) diminished the CHS activity to 75-50% of the wild-type CHS1 without promoting ACS activity. The results suggest that conformational changes in the periphery beyond the active site cavity volumes determine the product formation by ACSs vs. CHSs in R. graveolens. It is likely that ACS has evolved from CHS, but the sole enlargement of the active site pocket as in CHS1 mutant R2 is insufficient to explain this process.  相似文献   

13.
Cs—COR113(GenBank登录号:FE942098)为一受冷诱导的茶树黄酮醇合酶基因的cDNA片段,采用RACE技术克隆了这一基因的全长cDNA,命名为CsFLS(GenBank登录号:FJ577509)。CsFLScDNA序列全长为1303bp,5'-UTR和3’-UTR分别长91bp和175bp,包含一个编码336个氨基酸的完整开放阅读框。序列分析显示,CsFLS与烟草、矮牵牛、欧芹、拟南芥的黄酮醇合酶的同源性分别为74%、75%、75%和63%,含有2-酮戊二酸依赖性双加氧酶家族2个保守的基序,以及与黄酮醇合酶正确折叠有关的2个保守的甘氨酸残基。CsFLS的表达受低温诱导,但不受ABA诱导。  相似文献   

14.
Acridone synthase II cDNA was cloned from irradiated cell suspension cultures of Ruta graveolens L. and expressed in Escherichia coli. The translated polypeptide of Mr 42,681 revealed a high degree of similarity to heterologous chalcone and stilbene synthases (70-75%), and the sequence was 94% identical to that of acridone synthase I cloned previously from elicited Ruta cells. Highly active recombinant acridone synthases I and II were purified to apparent homogeneity by a four-step purification protocol, and the affinities to N-methylanthraniloyl-CoA and malonyl-CoA were determined. The molecular mass of acridone synthase II was estimated from size exclusion chromatography on a Fractogel EMD BioSEC (S) column at about 45 kDa, as compared to a mass of 44 +/- 3 kDa found for the acridone synthase I on Superdex 75. Nevertheless, the sedimentation analysis by ultracentrifugation revealed molecular masses of 81 +/- 4 kDa for both acridone synthases. It is proposed, therefore, that the acridone synthases of Ruta graveolens are typical homodimeric plant polyketide synthases.  相似文献   

15.
In biotransformations carried out under similar conditions enzymatic systems from carrot (Daucus carota L.), celeriac (Apium graveolens L. var. rapaceum) and horse-radish (Armoracia lapathifolia Gilib.) hydrolyzed the ester bonds of acetates of phenols or alicyclic alcohols. Nevertheless, methyl esters of aromatic acids did not undergo hydrolysis. Alcohols were oxidized to ketones in a reversible reaction.  相似文献   

16.
Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase   总被引:3,自引:0,他引:3  
Flavonol synthase was classified as a 2-oxoglutarate-dependent dioxygenase converting natural (2R,3R)-dihydroflavonols, i.e. dihydrokaempferol, to the corresponding flavonols (kaempferol). Flavonol synthase from Citrus unshiu (Satsuma mandarin), expressed in Escherichia coli and purified to homogeneity, was shown to accept also (2S)-naringenin as a substrate, producing kaempferol in high yield and assigning sequential flavanone 3beta-hydroxylase and flavonol synthase activities to the enzyme. In contrast, dihydrokaempferol was identified as the predominant product from assays performed with the unnatural (2R)-naringenin as substrate. The product which was not converted any further on repeated incubations was identified by 1H NMR and CD spectroscopies as (-)-trans-dihydrokaempferol. The data demonstrate that Citrus flavonol synthase encompasses an additional non-specific activity trans-hydroxylating the flavanones (2S)-naringenin as well as the unnatural (2R)-naringenin at C-3.  相似文献   

17.
Evolutionary relationships among representatives of Apiaceae (Umbelliferae) subfamily Apioideae have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid rpoC1 intron sequences. High levels of nucleotide sequence variation preclude the use of the ITS region for examining relationships across subfamilial boundaries in Apiaceae, whereas the rpoC1 intron is more suitably conserved for family-wide phylogenetic study but is too conserved for examining relationships among closely related taxa. In total, 126 ITS sequences from subfamily Apioideae and 100 rpoC1 intron sequences from Apiaceae (all three subfamilies) and outgroups Araliaceae and Pittosporaceae were examined. Phylogenies estimated using parsimony, neighbor-joining, and maximum likelihood methods reveal that: (1) Apiaceae subfamily Apioideae is monophyletic and is sister group to Apiaceae subfamily Saniculoideae; (2) Apiaceae subfamily Hydrocotyloideae is not monophyletic, with some members strongly allied to Araliaceae and others to Apioideae + Saniculoideae; and (3) Apiaceae subfamily Apioideae comprises several well-supported subclades, but none of these coincide with previously recognized tribal divisions based largely on morphological and anatomical characters of the fruit. Four major clades in Apioideae are provisionally recognized and provide the framework for future lower level phylogenetic analyses. A putative secondary structure model of the Daucus carota (carrot) rpoC1 group II intron is presented. Of its six major structural domains, domains II and III are the most, and domains V and VI the least, variable.  相似文献   

18.
Two different heterologous expression systems, microsomal fractions of Saccharomyces cerevisiae and transgenic tobacco plants, were used to investigate the enzymatic activities of flavonoid 3′-hydroxylase (GtF3′H) and flavone synthase II (GtFSII) homologues isolated from gentian petals. Recombinant GtF3′H expressed in yeast showed hydroxylation activities in the 3′ position with several flavonoid substrates, while recombinant GtFSII was able to produce flavone from flavanone. GtF3′ H-expressing transgenic tobacco plants showed a slight increase in anthocyanin content and flower color intensity, and conversion of the flavonol quercetin from kaempferol. On the other hand, GtFSII-expressing plants showed a remarkable reduction in anthocyanin content and flower color intensity, and additional accumulation of flavone, especially luteolin derivatives. We demonstrated that two cytochrome P450s from gentian petals have F3′H and FSII enzymatic activities both in vitro and in vivo, and might therefore be useful in modification of flower color using genetic engineering.  相似文献   

19.
20.
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号