首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spores of Streptomyces griseus contain trehalose and trehalase, but trehalose is not readily hydrolyzed until spore germination is initiated. Trehalase in crude extracts of spores, germinated spores, and mycelia of S. griseus had a pH optimum of approximately 6.2, had a Km value for trehalose of approximately 11 mM, and was most active in buffers having ionic strengths of 50 to 200 mM. Inhibitors or activators or trehalase activity were not detected in extracts of spores or mycelia. Several lines of evidence indicated that trehalose and trehalase are both located in the spore cytoplasm. Spores retained their trehalose and most of their trehalase activity following brief exposure to dilute acid. Protoplasts formed by enzymatic removal of the spore walls in buffer containing high concentrations of solutes also retained their trehalose and trehalase activity. Protoplasts formed in buffer containing lower levels of solutes contained low levels of trehalose. The mechanism by which trehalose metabolism is regulated in S. griseus spores is unresolved. A low level of hydration of the cytoplasm of the dormant spores and an increased level of hydration during germination may account for the apparent inactivity of trehalase in dormant spores and the rapid hydrolysis of trehalose upon initiation of germination.  相似文献   

2.
Trehalase was purified from cultures of Frankia strain ArI3 grown on media with or without NH4Cl. The purified enzyme was specific for trehalose, exhibited a broad pH optimum of pH 4.5 to 5.3 and had a K m for trehalose of 4.2 mM. The trehalase was inhibited in vitro completely by sucrose, glucose and mannose and partially by mannitol and sorbitol. In addition to the specific trehalase, a mixture of non-specific - and -glucosidases which exhibited some activity with ,-trehalose as a substrate were also partially purified in Frankia extracts made from nitrogen-fixing cells. These enzymes were not detected in the purifications of crude extracts made from non-nitrogen-fixing cells (grown on media supplemented with NH4Cl). Trehalase activity in crude extracts increased over time when cells were induced to fix nitrogen, and the maximum specific activity of trehalase from nitrogen-fixing cultures was 4 times the maximum activity from non-fixing cultures. Trehalase activity was also examined in crude extracts made from Frankia vesicle clusters isolated from Alnus rubra nitrogen-fixing nodules infected with ArI3. The maximum activity of trehalase in these clusters was 6–7 times greater than in the nitrogenfixing pure cultures of ArI3 and 26–33 times greater than the non-fixing pure cultures.Abbreviations pcv packed cell volume - DTE dithioerythritol - PMSF phenylmethylsulphonylfluoride - EDTA sodium ethylenediaminetetraacetate  相似文献   

3.
Trehalase is the enzyme which hydrolyzes the disaccharide trehalose into two alpha-D-glucose molecules. In this article, we present the immobilization of trehalase on aminopropyl glass particles. The enzyme was extracted from Escherichia coli Mph2, a strain harboring the pTRE11 plasmid, which contains the trehalase gene. The partially purified enzyme had a specific activity of 356 U/mg and could be used for quantifying trehalose in the presence of sucrose, maltose, lactose, starch, and glycogen. Partially purified trehalase was immobilized by covalent coupling with retention of its catalytic activity. The support chosen for the majority of the experiments reported was aminopropyl glass, although spherisorb-5NH(2) and chitin were also tested. The immobilized enzyme was assayed continuously for 40 h, at pH 6.0 and 30 degrees C, and no release of enzyme molecules was detected during this procedure. The best condition found for storing the enzyme-support complex was at 4 degrees C in the presence of 25 mM sodium maleate, containing 7 mM beta-mercaptoethanol, 1 mM ethylenediaminetetraacetic acid (EDTA), and 50% glycerol. The enzyme under these conditions was stable, retaining approximately 100% of its initial activity for at least 28 days. The immobilized enzyme can be employed to detect trehalose molecules in micromolar concentration. The optimum pH value found was 4.5 and the K(m) app. 4.9 x 10(-3) M trehalose at pH 4.6 and 30 degrees C, with V(max) of 5.88 mumol glucose . min.(-1), as calculated by a Lineweaver-Burk plot. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 33-39, 1997.  相似文献   

4.
The trehalose-degrading enzyme trehalase is activated upon addition of glucose to derepressed cells or in response to nitrogen source addition to nitrogen-starved glucose-repressed yeast (Saccharomyces cerevisiae) cells. Trehalase activation is mediated by phosphorylation. Inactivation involves dephosphorylation, as trehalase protein levels do not change upon multiple activation/inactivation cycles. Purified trehalase can be inactivated by incubation with protein phosphatase 2A (PP2A) in vitro. To test whether PP2A was involved in trehalase inactivation in vivo, we overexpressed the yeast PP2A isoform Pph22. Unexpectedly, the moderate (approximately threefold) overexpression of Pph22 that we obtained increased basal trehalase activity and rendered this activity unresponsive to the addition of glucose or a nitrogen source. Concomitant with higher basal trehalase activity, cells overexpressing Pph22 did not store trehalose efficiently and were heat sensitive. After the addition of glucose or of a nitrogen source to starved cells, Pph22-overexpressing cells showed a delayed exit from stationary phase, a delayed induction of ribosomal gene expression and constitutive repression of stress-regulated element-controlled genes. Deletion of the SCH9 gene encoding a protein kinase involved in nutrient-induced signal transduction restored glucose-induced trehalase activation in Pph22-overexpressing cells. Taken together, our results indicate that yeast PP2A overexpression leads to the activation of nutrient-induced signal transduction pathways in the absence of nutrients.  相似文献   

5.
Two haploid strains of Saccharomyces cerevisiae viz. MATalpha and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   

6.
α-Glucosidase activity of whole haemolymph has been investigated in adult males of the American cockroach, Periplaneta americana. Two electrophoretically distinguishable enzymes capable of hydrolysing α-glucosidic linkages are present in the serum component of the haemolymph, and one of these hydrolyses trehalose. Trehalase activity is also present in haemocytes, and the haemocyte enzyme shares an identical electrophoretic mobility and similar pH sensitivity with the serum trehalase. Furthermore, both enzymes are inhibited to the same extent by sodium ethylene diamine tetracetate (EDTA); thus it is suggested that the same enzyme may be responsible for trehalase activity in the two components. The Km of EDTA-inhibited trehalase is 3·3 mM and this value is reduced to 1·8 mM upon activation of the enzyme by calcium ions. The properties of the trehalase are discussed in light of the possible rôle of the enzyme in regulating haemolymph trehalose and glucose concentrations.  相似文献   

7.
Summary The mechanism of trehalose absorption was examined in developing ovaries of the silkworm,Bombyx mori. Trehalose and glucose absorption followed saturation kinetics giving an apparentK m value of 8.4 mM and a Vmax of 12.5 moles/30 min per g ovaries for trehalose absorption, and an apparentK m value of 26.4 mM and a Vmax of 36.6 moles/30 min per g ovaries for glucose uptake. Trehalose absorption was clearly inhibited by addition of NaCN or NaN3 to the incubation medium.Cellobiose, maltose, sucrose and turanose were taken up by ovaries at much lower rates than trehalose. Among the disaccharidases which hydrolyse these sugars, trehalase activity was highest. The correlation between trehalase activity and trehalose absorption rate was also demonstrated by a reduction of trehalase activity accompanied by reduced absorption rates after extirpation of the suboesophageal ganglion (SG). During trehalose absorption, glucose was released into the incubation medium, but after SG removal, no liberation of glucose was observed. Furthermore, no accumulation of14C-trehalose, added to the medium, was observed in the cells and almost all radioactivity was recovered as glucose and glycogen in the ovaries.These results suggest that in developing silkworm ovaries, trehalose is absorbed by a specific carriermediated and energy-dependent system, in which the hydrolysis by trehalase is an obligatory step.  相似文献   

8.
Two haploid strains of Saccharomyces cerevisiae viz. MATα and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   

9.
Trehalose and trehalase in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
Trehalase is ubiquitous in higher plants. So far, indications concerning its function are scarce, although it has been implicated in the detoxification of exogenous trehalose. A putative trehalase gene, T19F6.15, has been identified in the genome sequencing effort in Arabidopsis. Here we show that this gene encodes a functional trehalase when its cDNA is expressed in yeast, and that it is expressed in various plant organs. Furthermore, we present results on the distribution and activity of trehalase in Arabidopsis and we describe how inhibition of trehalase by validamycin A affects the plants response to exogenous trehalose (alpha-D-glucopyranosyl-[1, 1]-alpha-D-glucopyranoside). Trehalase activity was highest in floral organs, particularly in the anthers (approximately 700 nkat g(-1) protein) and maturing siliques (approximately 250 nkat g(-1) protein) and much lower in leaves, stems, and roots (less than 50 nkat g(-1) protein). Inhibition of trehalase in vivo by validamycin A led to the accumulation of an endogenous substance that had all the properties of trehalose, and to a strong reduction in sucrose and starch contents in flowers, leaves, and stems. Thus, trehalose appears to be an endogenous substance in Arabidopsis, and trehalose and trehalase may play a role in regulating the carbohydrate allocation in plants.  相似文献   

10.
Trehalase was studied in Schizosaccharomyces pombe cells growing vegetatively on minimal medium and in sporulating cultures. Acid trehalase activity, measured at pH 4.2, was absent in vegetative cells and occurred only in asci, indicating that this activity represented the sporulation-specific trehalase reported previously. In contrast, neutral trehalase, measured at pH 6.0, was constitutively present in vegetative cells during the exponential and stationary growth phase as well as in asci. In vegetative cells, neutral trehalase did not sediment with cell walls, suggesting a cytoplasmic localization. Its activity increased ten-fold when growing cells were subjected to heat treatment of 2 h. Neutral trehalase from heat-treated cells had a pH optimum of 6.0 and was almost completely inhibited by 3 mM ZnCl2. Acid trehalase activity could be measured in intact asci, indicating that it is localized in the ascus cell walls, while neutral trehalase was not detectable in intact asci and appeared to be present primarily in the walls of ascospores and in the ascus epiplasm.  相似文献   

11.
Escherichia coli can use the nonreducing disaccharide trehalose as a sole source of carbon and energy. Trehalose transport into the cell is mediated via the phosphotransferase system, and a mutant depleted in the nonspecific proteins enzyme I, HPr, and enzyme IIIGlc of this system was not only unable to grow on glucose or mannitol but also was strongly reduced in its ability to grow on trehalose. A pseudorevertant (PPA69) of such a deletion mutant was isolated that could again grow on glucose but not on mannitol. This revertant could now also use trehalose as a carbon source due to a constitutive galactose permease. PPA69 was subjected to Tn10 insertional mutagenesis, and a mutant (UE5) was isolated that no longer could use trehalose as a carbon source but could still grow on glucose. UE5 lacked a periplasmic trehalase that was present in PPA69. P1-mediated transduction of this Tn10 insertion (treA::Tn10) into a pts+ wild-type strain (MC4100) had no effect on the ability of MC4100 to grow on trehalose but resulted in loss of the periplasmic trehalase activity. The Tn10 insertion was mapped at 26 min on the E. coli linkage map and was 3% cotransducible with trp, in the order treA::Tn10, trp, cys. Trehalase activity in MC4100 was not induced by growth in the presence of trehalose but increased by about 10-fold when 0.6 M sucrose was added to minimal growth medium. Using the in vivo mini-Mu cloning system and growth on trehalose as selection, we cloned the treA gene. A 9-kilobase EcoRI fragment containing treA was subcloned into pBR322. Strains carrying this plasmid (pTRE5) contained about 100-fold higher periplasmic trehalase activity than PPA69 or MC4100. Using polyacrylamide gel electrophoresis, we found a protein of molecular weight 58,000 among the periplasmic proteins of the pTRE5-carrying strain that was absent in UE5. This protein was purified by ammonium sulfate precipitation and DEAE-Sepharose ion-exchange chromatography and contained all the trehalase activity. Minicells containing the treA+ plasmid produced, in addition to three other proteins, the 58,000-dalton protein. Thus, the plasmid carries the structural gene for the periplasmic trehalase and not just a gene involved in the regulation of the enzyme.  相似文献   

12.
Lyophilized cells of the non-pathogenic yeast Saccharomyces boulardii are used in many countries for the treatment of several types of diarrhoea and other gastrointestinal diseases. Although the cells must be viable, their mechanism of action is unknown. The disaccharide trehalose is a protectant against several forms of environmental stress in yeast and is involved in maintaining cell viability. There is no information on the enzymes involved in degradation of trehalose in S. boulardii. The aim of the present study was to characterize trehalase activity in this yeast. Cells of S. boulardii grown in glucose exhibited neutral trehalase activity only in the exponential phase. Acidic trehalase was not detected in glucose medium. Cells grown in trehalose exhibited acid and neutral trehalase activities at all growth stages, particularly in the exponential phase. The optimum pH and temperature values for neutral trehalase activity were determined as 6.5 and 30 °C respectively, the half-life being approximately 3 min at 45 °C. The relative molecular mass of neutral trehalase is 80 kDa and the K m 6.4 mM (±0.6). Neutral trehalase activity at pH 6.5 was weakly inhibited by 5 mM EDTA and strongly inhibited by ATP, as well as the divalent ions Cu++, Fe++ and Zn++. Enzyme activity was stimulated by Mg++ and Ca++ only in the absence of cAMP. The presence of cAMP with no ion additions increased activity by 40%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Mutation at the GLC1 locus in Saccharomyces cerevisiae resulted in simultaneous deficiencies in glycogen and trehalose accumulation. Extracts of yeast cells containing the glc1 mutation exhibited an abnormally high trehalase activity. This elevated activity was associated with a defective cyclic AMP (cAMP)-dependent monocyclic cascade which, in normal cells, regulates trehalase activity by means of protein phosphorylation and dephosphorylation. Trehalase in extracts of normal cells was largely in a cryptic form which could be activated in vitro by ATP . Mg in the presence of cAMP. Normal extracts also exhibited a correlated cAMP-dependent protein kinase which catalyzed incorporation of label from [gamma-32P]ATP into protamine. In contrast, cAMP had little or no additional activating effect on trehalase or on protamine phosphorylation in extracts of glc1 cells. Similar, unregulated activation of cryptic trehalase was also found in glycogen-deficient strains bearing a second, independently isolated mutant allele, glc1-2. Since trehalase activity was not directly affected by cAMP, the results indicate that the glc1 mutation results in an abnormally active protein kinase which has lost its normal dependence on cAMP. Trehalase in extracts of either normal or mutant cells underwent conversion to a cryptic form in an Mg2+-dependent, fluoride-sensitive reaction. Rates of this reversible reduction of activity were similar in extracts of mutant and normal cells. This same, unregulated protein kinase would act on glycogen synthase, maintaining it in the phosphorylated low-activity D-form. The glc1 mutants provide a novel model system for investigating the in vivo metabolic functions of a specific, cAMP-dependent protein kinase.  相似文献   

15.
Trehalase activity was measured in tissue homogenates and extracts from the larval, pupal, and adult stages of Musca domestica, the common housefly. The tissue homogenates were separated into soluble and particlebound fractions by differential centrifugation, and the trehalase activities of the fractions were measured. The trehalase specific activity (units of enzyme/mg protein) in homogenates from adult insects was nearly twenty times greater than activity in homogenates of larvae. Homogenates of pupae showed intermediate values. In both the adults and larvae the enzyme activity was approximately evenly distributed between soluble and particle-bound forms, whereas 95 per cent of the trehalase activity in the extract of pupae was in the soluble fraction. The results show that the form and amount of trehalase present during housefly development is adjusted to accommodate the enzyme's physiological rôle of splitting trehalose to glucose for the insect's use as an energy source.  相似文献   

16.
L. C. Eze 《Biochemical genetics》1989,27(9-10):487-495
Trehalase is an enzyme which hydrolyzes the disaccharide trehalose, yielding glucose. It is widespread in nature and found in various human tissues as well as in human plasma. The synthesis and degradation of its substrate trehalose have been considered as being implicated in carbohydrate transport mechanisms. Trehalase activity has been examined in both normal subjects and diabetic patients. In the normal subjects, the frequency histogram of the enzyme activity is bimodal, indicating the existence of genetic polymorphism. The proposed model of a single autosomal locus with two alleles has been verified, with 27% of the population tested belonging to the "low-activity" phenotype and 73% being of the "high-activity" phenotype. Males have higher mean plasma trehalase activity than females. Apparently, the reverse appears to be the case in the diabetic subjects. The mean value for all nondiabetics and that of diabetics were computed and the difference was found to be statistically significant (F = 7.02, N1 = 3, N2 = 56, P less than 0.01). An experiment showed that neither the abnormally high concentration of glucose in diabetics nor any other constituent of the diabetic plasma caused an increase in plasma trehalase activity (t = 0.0724, P greater than 0.10). A Woolf and Haldane test to determine association of diabetes mellitus and plasma trehalase phenotype indicated a highly significant association with the high-activity phenotype (chi 2 = 18.5350, P less than 0.01). Thus the inference is that people with high plasma trehalase activity are more prone to develop diabetes mellitus than people with low enzyme activity.  相似文献   

17.
Trehalase in conidia of Aspergillus oryzae   总被引:6,自引:2,他引:4  
Horikoshi, Koki (The Institute of Physical and Chemical Research, Bunkyo-ku, Tokyo, Japan), and Yonosuke Ikeda. Trehalase in conidia of Aspergillus oryzae. J. Bacteriol. 91:1883-1887. 1966.-Trehalases (soluble trehalase and coat-bound trehalase) were found in the conidia of Aspergillus oryzae, and the total activity of the trehalases increased during the germination process. The soluble trehalase was purified by diethylaminoethyl-cellulose column chromatography; its optimal pH, Michaelis constant, and heat stability were studied. In vitro, the trehalases were competitively inhibited by d-mannitol, which was also contained in the conidia. Since the trehalose content in the conidia decreased at an early stage of germination, it was assumed that trehalase might begin to hydrolyze trehalose after the inhibitory effect of d-mannitol decreased.  相似文献   

18.
Trehalase activity in flight muscle of the flesh fly Sacrophaga bullata is detected histochemically at light- and electron-microscopic levels by using diaminobenzidine, glucose oxidase and peroxidase in the incubation medium. The association of trehalase activity with the inner mitochondrial membrane is confirmed. Biochemical assay shows that about 50% of the initial total trehalase activity is lost from the tissue during the histochemical processing and about 50% remains for histochemical detection.  相似文献   

19.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

20.
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号