首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a recent article, Immel et al. (Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, et al. 2021. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol. 38:4059–4076) extracted DNA from 36 individuals dead from plague in Ellwangen, Southern Germany, during the 16th century. By comparing their human leukocyte antigen (HLA) genotypes with those of 50 present-day Ellwangen inhabitants, the authors reported a significant decrease of HLA-B*51:01 and HLA-C*06:02 and a significant increase of HLA-DRB1*13:01/13:02 frequencies from ancient to modern populations. After comparing these frequencies with a larger sample of 8,862 modern Germans and performing simulations of natural selection, they concluded that these changes had been driven by natural selection. In an attempt to provide more evidence on such stimulating results, we explored the HLA frequency patterns over all of Europe, we predicted binding affinities of HLA-B/C/DRB1 alleles to 106,515 Yersinia pestis-derived peptides, and we performed forward simulations of HLA genetic profiles under neutrality. Our analyses do not sustain the conclusions of HLA protection or susceptibility to plague based on ancient DNA.  相似文献   

2.
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged less than 6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer membrane proteins (Yops), the broad range protease Pla, pathogen-associated molecular patterns (PAMPs) and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and less than 48 h for pneumonic plague). In here, we review recent research advances on Y. pestis evolution, virulence factors function, bacterial strategies to subvert mammalian innate immune responses, vaccination and problems associated to pneumonic plague diagnosis.  相似文献   

3.

Background

Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent “plagues”) and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900±15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data.

Methodology/Principal Findings

We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion.

Conclusions/Significance

These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics.  相似文献   

4.
The human leukocyte antigen (HLA) genes exhibit the highest degree of polymorphism in the human genome. This high degree of variation at classical HLA class I and class II loci has been maintained by balancing selection for a long evolutionary time. However, little is known about recent positive selection acting on specific HLA alleles in a local population. To detect the signature of recent positive selection, we genotyped six HLA loci, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 in 418 Japanese subjects, and then assessed the haplotype homozygosity (HH) of each HLA allele. There were 120 HLA alleles across the six loci. Among the 80 HLA alleles with frequencies of more than 1%, DPB1*04∶01, which had a frequency of 6.1%, showed exceptionally high HH (0.53). This finding raises the possibility that recent positive selection has acted on DPB1*04∶01. The DPB1*04∶01 allele, which was present in the most common 6-locus HLA haplotype (4.4%), A*33∶03-C*14∶03-B*44∶03-DRB1*13∶02-DQB1*06∶04-DPB1*04∶01, seems to have flowed from the Korean peninsula to the Japanese archipelago in the Yayoi period. A stochastic simulation approach indicated that the strong linkage disequilibrium between DQB1*06∶04 and DPB1*04∶01 observed in Japanese cannot be explained without positive selection favoring DPB1*04∶01. The selection coefficient of DPB1*04∶01 was estimated as 0.041 (95% credible interval 0.021–0.077). Our results suggest that DPB1*04∶01 has recently undergone strong positive selection in Japanese population.  相似文献   

5.

Background

Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages'' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes.

Conclusions/significance

CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate.  相似文献   

6.

Background

Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined.

Methodology and Principal Findings

The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer''s patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis.

Conclusions and Significance

The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.  相似文献   

7.
《Genomics》2021,113(4):1952-1961
BackgroundPlague is a highly dangerous vector-borne infectious disease that has left a significant mark on history of humankind. There are 13 natural plague foci in the Caucasus, located on the territory of the Russian Federation, Azerbaijan, Armenia and Georgia. We performed whole-genome sequencing of Y. pestis strains, isolated in the natural foci of the Caucasus and Transcaucasia. Using the data of whole-genome SNP analysis and Bayesian phylogeny methods, we carried out an evolutionary-phylogeographic analysis of modern population of the plague pathogen in order to determine the phylogenetic relationships of Y. pestis strains from the Caucasus with the strains from other countries.ResultsWe used 345 Y. pestis genomes to construct a global evolutionary phylogenetic reconstruction of species based on whole-genome SNP analysis. The genomes of 16 isolates were sequenced in this study, the remaining 329 genomes were obtained from the GenBank database. Analysis of the core genome revealed 3315 SNPs that allow differentiation of strains. The evolutionary phylogeographic analysis showed that the studied Y. pestis strains belong to the genetic lineages 0.PE2, 2.MED0, and 2.MED1. It was shown that the Y. pestis strains isolated on the territory of the East Caucasian high-mountain, the Transcaucasian high-mountain and the Priaraksinsky low-mountain plague foci belong to the most ancient of all existing genetic lineages - 0.PE2.ConclusionsOn the basis of the whole-genome SNP analysis of 345 Y. pestis strains, we describe the modern population structure of the plague pathogen and specify the place of the strains isolated in the natural foci of the Caucasus and Transcaucasia in the structure of the global population of Y. pestis. As a result of the retrospective evolutionary-phylogeographic analysis of the current population of the pathogen, we determined the probable time frame of the divergence of the genetic lineages of Y. pestis, as well as suggested the possible paths of the historical spread of the plague pathogen.  相似文献   

8.
The outer membrane is a key virulence determinant of gram-negative bacteria. In Yersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6 enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promote Y. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail–LPS assembly as an organized whole, rather than its individual components, and provide a handle for targeting Y. pestis pathogenesis.  相似文献   

9.
Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis'' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria''s ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability.  相似文献   

10.
Plague, caused by the bacterium Yersinia pestis, is a mammalian vector-borne disease, transmitted by fleas that serve as the vector between rodent hosts. For many pathogens, including Y. pestis, there are strong evolutionary pressures that lead to a reduction in ‘useless genes'', with only those retained that reflect function in the specific environment inhabited by the pathogen. Genetic traits critical for survival and transmission between two environments, the rodent and the flea, are conserved in epizootic/epidemic plague strains. However, there are genes that remain conserved for which no function in the flea–rodent cycle has yet been observed, indicating an additional environment may exist in the transmission cycle of plague. Here, we present evidence for highly conserved genes that suggests a role in the persistence of Y. pestis after death of its host. Furthermore, maintenance of these genes points to Y. pestis traversing a post-mortem path between, and possibly within, epizootic periods and offering insight into mechanisms that may allow Y. pestis an alternative route of transmission in the natural environment.  相似文献   

11.

Background

Diversity among human leukocyte antigen (HLA) molecules has been maintained by host-pathogen coevolution over a long period of time. Reflecting this diversity, the HLA loci are the most polymorphic in the human genome. One characteristic of HLA diversity is long-term persistence of allelic lineages, which causes trans-species polymorphisms to be shared among closely related species. Modern humans have disseminated across the world after their exodus from Africa, while chimpanzees have remained in Africa since the speciation event between humans and chimpanzees. It is thought that modern humans have recently acquired resistance to novel pathogens outside Africa. In the present study, we investigated HLA alleles that could contribute to this local adaptation in humans and also studied the contribution of natural selection to human evolution by using molecular data.

Results

Phylogenetic analysis of HLA-DRB1 genes identified two major groups, HLA Groups A and B. Group A formed a monophyletic clade distinct from DRB1 alleles in other Catarrhini, suggesting that Group A is a human-specific allelic group. Our estimates of divergence time suggested that seven HLA-DRB1 Group A allelic lineages in humans have been maintained since before the speciation event between humans and chimpanzees, while chimpanzees possess only one DRB1 allelic lineage (Patr-DRB1*03), which is a sister group to Group A. Experimental data showed that some Group A alleles bound to peptides derived from human-specific pathogens. Of the Group A alleles, three exist at high frequencies in several local populations outside Africa.

Conclusions

HLA Group A alleles are likely to have been retained in human lineages for a long period of time and have not expanded since the divergence of humans and chimpanzees. On the other hand, most orthologs of HLA Group A alleles may have been lost in the chimpanzee due to differences in selective pressures. The presence of alleles with high frequency outside of Africa suggests these HLA molecules result from the local adaptations of humans. Our study helps elucidate the mechanism by which the human adaptive immune system has coevolved with pathogens over a long period of time.  相似文献   

12.

Background

Plague was introduced to Madagascar in 1898 and continues to be a significant human health problem. It exists mainly in the central highlands, but in the 1990s was reintroduced to the port city of Mahajanga, where it caused extensive human outbreaks. Despite its prevalence, the phylogeography and molecular epidemiology of Y. pestis in Madagascar has been difficult to study due to the great genetic similarity among isolates. We examine island-wide geographic-genetic patterns based upon whole-genome discovery of SNPs, SNP genotyping and hypervariable variable-number tandem repeat (VNTR) loci to gain insight into the maintenance and spread of Y. pestis in Madagascar.

Methodology/Principal Findings

We analyzed a set of 262 Malagasy isolates using a set of 56 SNPs and a 43-locus multi-locus VNTR analysis (MLVA) system. We then analyzed the geographic distribution of the subclades and identified patterns related to the maintenance and spread of plague in Madagascar. We find relatively high levels of VNTR diversity in addition to several SNP differences. We identify two major groups, Groups I and II, which are subsequently divided into 11 and 4 subclades, respectively. Y. pestis appears to be maintained in several geographically separate subpopulations. There is also evidence for multiple long distance transfers of Y. pestis, likely human mediated. Such transfers have resulted in the reintroduction and establishment of plague in the port city of Mahajanga, where there is evidence for multiple transfers both from and to the central highlands.

Conclusions/Significance

The maintenance and spread of Y. pestis in Madagascar is a dynamic and highly active process that relies on the natural cycle between the primary host, the black rat, and its flea vectors as well as human activity.  相似文献   

13.
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.Yersinia pestis, the causative agent of plague, is a nonmotile Gram-negative bacterial pathogen. The genus Yersinia comprises two other pathogens that cause worldwide infections in humans and animals: Y. pseudotuberculosis and Y. enterocolitica (11, 12, 22, 61, 71). Despite their genetic relationship, these species differ radically in their pathogenicity and transmission. Plague is primarily a disease of wild rodents that is transmitted to other mammals through flea bites. In humans it produces the bubonic form of plague. Y. pestis also can be transmitted from human to human by aerosol, especially during pandemics, causing primarily pneumonic plague. Evolutionarily, it is estimated that Y. pestis diverged from the enteric pathogen Y. pseudotuberculosis within the last 20,000 years, while Y. pseudotuberculosis and Y. enterocolitica lineages separated 0.4 to 1.9 million years ago (2). Y. pestis inhabits a distinct ecological niche, and its transmission is anchored in its unique plasmid inventory: the murine toxin (pMT) and plasminogen activator (pPCP) plasmids. In addition, Y. pestis harbors the low-calcium-response plasmid pCD, which it inherited from its closest relative, Y. pseudotuberculosis (pYV) (12), and it also is found in the more distantly related Y. enterocolitica (71). So-called cryptic plasmids have been described in the literature as part of the Y. pestis mobilome (71), but no sequence data are available to decipher the nature and impact of such plasmids in the epidemiology and pathogenicity of Y. pestis (14). Y. pestis isolates have been historically grouped into the biovars Antiqua (ANT), Medievalis (MED), and Orientalis (ORI), based on metabolic properties such as nitrate reduction and fermentation patterns (72). However, we will use the population-based nomenclature for Y. pestis introduced by Achtman et al. (1), as we believe it better reflects the true evolutionary relationship. Due to its young evolutionary age, only a few genetic polymorphisms have been identified within the Y. pestis genomes sequenced to date (1). Here, we report the comparative analysis of the virulent Y. pestis strain Angola, a representative of one of the most ancient Y. pestis lineages thus far sequenced. We studied adaptive microevolutionary traits Y. pestis has acquired and predicted the global Yersinia pangenome. By comparing the genomes of the three human pathogenic Yersinia species (12, 22), we investigated the global- and species-specific gene reservoir, the genome dynamics, and the degree of genetic diversity that is found within these species. Our genotypic and phenotypic analyses, as well as the refined single-nucleotide polymorphism (SNP)-based phylogeny of Y. pestis, indicate that Angola is a deep-rooted isolate with unique genome characteristics intermediate between modern Y. pestis isolates and Y. pseudotuberculosis.  相似文献   

14.
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.  相似文献   

15.
India experienced two plague outbreaks in Gujarat and Maharastra during 1994 and then in the Shimla district of Himachal Pradesh during 2002. Yersinia pestis strains recovered from rodents and pneumonic patients during the 1994 outbreaks, pneumonic patients from the 2002 Shimla outbreak and rodents trapped on the Deccan Plateau during a surveillance activity carried out in 1998 were characterized by MLVA, ERIC-PCR and ERIC-BOX-PCR. MLVA genotyping of Indian Y. pestis strains revealed strains of 2 Orientalis, 1 Mediaevalis and 1 Antiqua genotypes distributed in three distinct branches corresponding to their biovar. The Orientalis genotype strains recovered from the 1994 outbreaks and 1998 surveillance activity clustered in one branch while the Antiqua biovar strains from the Shimla outbreak and the Mediaevalis strain recovered from a rodent trapped on the Deccan Plateau region during surveillance formed the other branches. The Orientalis Y. pestis strains recovered from rodents and patients from the 1994 plague outbreaks exhibited similar MLVA, ERIC-PCR and ERIC-BOX-PCR profiles and these were closely related to the Orientalis strains recovered from the rodents trapped on the Deccan Plateau. These data provide evidence for the possible linkage between the Y. pestis strains resident in the endemic region and those that were associated with the 1994 plague outbreaks. Mediaevalis and Antiqua biovars also were recovered from the environmental reservoir on the Deccan Plateau and from the pneumonic patients of 2002 plague outbreak. Therefore, as in Central Asian and African regions, Antiqua and Mediaevalis biovars seem to be well established in the Indian subcontinent as well. ERIC-PCR DNA fingerprinting delineated genotypes similar to those defined by MLVA. Thus ERIC-PCR appears to have the potential to be used as a molecular marker in the molecular epidemiological investigations of plague.  相似文献   

16.
Yersinia pestis, the causative agent of human bubonic and pneumonic plague, is spread during natural infection by the fleas of rodents. Historically associated with infected rat fleas, studies on the kinetics of infection in rats are surprisingly few, and these reports have focused mainly on bubonic plague. Although the natural route of primary infection results in bubonic plague in humans, it is commonly thought that aerosolized Y. pestis will be utilized during a biowarfare attack. Accordingly, based on our previous characterization of the mouse model of pneumonic plague, we sought to examine the progression of infection in rats exposed in a whole-body Madison chamber to aerosolized Y. pestis CO92. Following an 8.6 LD50 dose of Y. pestis, injury was apparent in the rat tissues based on histopathology, and chemokines and cytokines rose above control levels (1 h post infection [p.i.]) in the sera and organ homogenates over a 72-h infection period. Bacteria disseminated from the lungs to peripheral organs, with the largest increases in the spleen, followed by the liver and blood at 72 h p.i. compared to the 1 h controls. Importantly, rats were as sensitive to pneumonic plague as mice, having a similar LD50 dose by the intranasal and aerosolized routes. Further, we showed direct transmission of plague bacteria from infected to uninfected rats. Taken together, the data allowed us to characterize for the first time a rat pneumonic plague model following aerosolization of Y. pestis.  相似文献   

17.
18.
Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.  相似文献   

19.
The potential use of CRISPR loci genotyping to elucidate population dynamics and microevolution of 146 Yersinia pestis strains from different biovars and locations was investigated in this work. The majority of strains from the Orientalis biovar presented specific spacer arrays, allowing for the establishment of a CRISPR signature for their respective isolates. Twenty-one new spacers were found in the Y. pestis strains from plague foci in Brazil. Ninety-three (64%) strains were grouped in the G1 genotype, whereas the others were distributed in 35 genotypes. This study allowed observing a microevolutionary process in a group of Y. pestis isolated from Brazil. We also identified specific genotypes of Y. pestis that were important for the establishment of the bacteria in plague foci in Brazil. The data have provided supporting evidence for the diversity and dynamics of CRISPR loci present in the genome of Y. pestis strains from plague foci in Brazil.  相似文献   

20.

Background

Rhombomys opimus (great gerbil) is a reservoir of Yersinia pestis in the natural plague foci of Central Asia. Great gerbils are highly resistant to Y. pestis infection. The coevolution of great gerbils and Y. pestis is believed to play an important role in the plague epidemics in Central Asia plague foci. However, the dynamics of Y. pestis infection and the corresponding antibody response in great gerbils have not been evaluated. In this report, animal experiments were employed to investigate the bacterial load in both the liver and spleen of infected great gerbils. The dynamics of the antibody response to the F1 capsule antigen of Y. pestis was also determined.

Methodology

Captured great gerbils that tested negative for both anti-F1 antibodies and bacterial isolation were infected subcutaneously with different doses (105 to 1011 CFU) of a Y. pestis strain isolated from a live great gerbil during routine plague surveillance in the Junggar Basin, Xinjiang, China. The clinical manifestations, changes in body weight, anal temperature, and gross anatomy of the infected animals were observed. The blood cell count, bacterial load, and anti-F1 antibody titers were determined at different time points after infection using a blood analyzer, plate counts, and an indirect hemagglutination assay, respectively.

Conclusions/Significance

The dynamics of bacterial load and the anti-F1 antibody concentration in great gerbils are highly variable among individuals. The Y. pestis infection in great gerbils could persist as long as 15 days. They act as an appropriate reservoir for plague in the Junggar Basin, which is part of the natural plague foci in Central Asia. The dynamics of the Y. pestis susceptibility of great gerbil will improve the understanding of its variable resistance, which would facilitate the development of more effective countermeasures for controlling plague epidemics in this focus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号