首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

2.
大葱卵器及受精后助细胞的超微结构   总被引:1,自引:0,他引:1  
席湘媛  栾凤柱 《云南植物研究》2001,23(1):79-84,T003,T004,T005
章丘大葱(Allium fistulosum L.cv.Zhangqiu)的卵器由1个卵细胞及2个助细胞组成,观察到不少卵器没有卵细胞,只有2个助细胞。卵细胞的核及大部分细胞质位于细胞的合点端,1个大液泡占据了细胞其他部位。卵细胞含有很多的核糖体及多聚核糖体、嵴明显的线粒体、粗面内质网、高尔基体具小泡,卵细胞似是一个活跃的细胞。细胞外被细胞壁,其合点端及侧方与助细胞共同壁不连续,助细胞有一较大的核,位于细胞膨大的部位,众多的小液泡遍布细胞中。核糖体及聚合核糖体、线粒体,粗面内质网及风心圆环状粗面内质丰富,高尔基体及小泡常见,反映了其活跃的代谢作用。助细胞合点端及侧方与卵细胞、中央细胞的共同壁不连续,与卵细胞共同壁含胞间连丝,壁不连续处,有不状多层膜结构伸入卵细胞质,显示助细胞可能对卵细胞提供营养,伟粉后,一个助细胞退化,宿存助细胞至随胚胚期尚存在,它经历了一个缓慢的退化过程,出现质壁分离,细胞质变稀,液泡扩大,细胞器逐渐减少,在椭形胚期,宿存助细胞核内的染色质及核仁消失,有细胞质侵入核内,因宿存助细胞壁变厚,细胞质出现现脂滴,宿存助细胞可能仍有合成功能,宿存助细胞壁出现若干无壁部位,细胞内的营养物质可能通过无壁部位向胚乳转运,供游离核胚乳及胚乳细胞化初期的发育。  相似文献   

3.
在野外居群调查的启示下,本文以组件观点对柳叶野豌豆复合种和歪头菜幼苗亚单位的时序变化与开花关系进行了分析。结果发现在柳叶野豌豆复合种栽培居群中存在打破物种间形体结构特征的个体,即在复叶由一对小叶组成的植株就已开花而进入生殖时期。另外,在歪头菜的野生居群中发现由三或四枚小叶组成复叶的个体,因此,我们推测这种形体结构的变化可能暗示着柳叶野豌豆复合种和歪头菜有着共同的祖先。  相似文献   

4.
The ultrastructure of the mature embryo sac, the early stages of the embryo and endosperm development of common radish, Raphanur sativus was examined. The embryo sac consists of 7 cells with antipodal ceils disappeared when it matures. The egg cell is highly polarized. The wall surrounded the chalazal end of the egg cell is incomplete, showing a discontinuous structure of an electron dense material deposited intermittently in the space between the two plasma membranes of the egg cell and central cell. The synergid has filiform apparatus, rich in organelles and well developed ER. The two polar nuclei of the central cell are located near the egg apparatus because of the big vacuole, and the finger-like protrutions from the cell wall, as that in synergid, are found. The first division of the zygote occurs 4–5 days after pollination and the development of the embryo follows the Onagrad type, and the structure of the embryo cell is quite simple for containing small quantity of ER, plastids and other organelles. The primary endosperm nucleus deviates 2 days earlier than zygote. The endosperm is of nuclear-endosperm containing chloroplasts, well developed ER, and plentiful of mitochondria and golgi bodies and the nodule-like aggregation in both. the chalazal and micropylar ends of the embryo sac during the early development appeared, and cell wall starting at the micropylar end by freely-growing forms about 16 days after pollination.  相似文献   

5.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

6.
The ultrastructure of synergids of watermelon (Citrullus Lanatus L.) was investigated using transmission electron microscopy at following stages of embryo sacs: 1. Unpollination, on the first flowering day. 2. Unpollination, on 2nd day after anthesis (DAA). 3. Fertilization, on DAA 2. The synergids with distinct filiform apparatus at the micropylar end have abundant organelle, such as mitochondria, endoplasmic reticulum, and plastids in cytoplasm, which indicate that they are active on the first flowering day. No wall is present at the chalazal part of synergid, and there are some flocculent materials and vesicles in the spaces of cytoplasma membranes among synergid, egg cell and central cell in embryo sacs at the first and the second stages. On DAA 2, in unpollinated embryo sacs, the central large vacuole of synergid is divided into several smaller ones and the starch grains decrease in cytoplasm. There is no newly synthesized wall at the chalazal end of persistent synergid in fertilized embryo sacs. The contents of degenerated synergid, in the form of electron dense granules, are located in the wide space among central cell, zygote and persistent synergid, and some of them migrate into central cell through cytoplasma membrane. Therefore, it is deduced that the contents of synergid might serve as a nutrient supplement to the development of endosperm, but not embryo.  相似文献   

7.
竹节参雌配子体发育的研究   总被引:2,自引:0,他引:2  
本文报道了竹节参(Panax japonicus C.A.Mey)雌配子体(胚囊)的发育过程。竹节参大孢子母细胞减数分裂产生线形排列的大孢子四分体。胚囊发育属蓼型,由合点端大孢子发育而成。游离核胚囊时期,胚囊珠孔端的细胞器种类和数量都较胚囊合点端多;胚囊合点端相邻的珠被细胞中有含淀粉粒的小质体,与胚囊珠孔端相邻的退化中的非功能大孢子中则有含淀粉粒的大质体和大类脂体。成熟胚囊中,反足细胞较早退化;极核融合成次生核;卵细胞高度液泡化,细胞器数量较少;助细胞则有丰富的细胞器和发达的丝状器。PAS反应表明,受精前的成熟胚囊中积累淀粉粒。次生核受精后,很快分裂产生胚乳游离核,到几十至数百个核时形成胚乳细胞。卵细胞受精后则要经过较长的休眠期。  相似文献   

8.
被子植物胚囊的“雌性生殖单位”,已在多种植物上进行了超微结构的观察,但大多都以卵细胞受精前后的结构变化为主要研究内容。对于“雌性生殖单位”中的另一重要成员——助细胞,在不同发育状态下其结构变化的详细资料不多,尤其是助细胞退化后的物质去向,少见报道。本研究主要观察了西瓜不同发育时期(受精前后)、不同发育状态(柱头授粉和未授粉)的助细胞超微结构,以期为研究助细胞在双受精中所起作用提供新的资  相似文献   

9.
扁豆成熟胚囊的超微结构   总被引:7,自引:1,他引:7  
本文对扁豆(Dolichos lablab)成熟胚囊的超微结构进行了研究,在成熟胚囊中,卵细胞和助细胞仅在珠孔端1/3有细胞壁,靠近合点端,卵细胞一助细胞,卵细胞-中央细胞,助细胞-中央细胞之间没有细胞壁存在,相邻细胞的质膜靠在一起,在卵细胞和中央细胞的质膜间,有些地方存在中等电子密度的物质,卵细胞的细胞质中含有很多的线粒体和质体,内质网和高尔基体较少,助细胞的珠孔端有一复杂的丝状器,靠近珠孔端的细胞质中有很多管状的内质网,表明助细胞可能具有分泌功能,在助细胞的合点端,含有丰富的粗糙内质网,助细胞和卵细胞的质膜之间有很多囊泡状的结构,中央细胞内含有丰富的线粒体,高尔基体和内质网,中央细胞的壁向内形成突起,在周缘细胞质中含有丰富的脂滴。  相似文献   

10.
The ultrastructure and composition of the synergids of Capsella bursa-pastoris were studied before and after fertilization. The synergids in the mature embryo sac contain numerous plastids, mitochondria, dictyosomes and masses of ER and associated ribosomes. Each synergid contains a large chalazal vacuole, a nucleus with a single nucleolus and is surrounded by a wall. This wall is thickest at the micropyle end of the cell where it proliferates into the filiform apparatus. At the chalazal end of the cell the wall thins and may be absent for small distances. The pollen tube grows into one of the two synergids through the filiform apparatus and extends one-third the length of the cell before it discharges. Following discharge of the pollen tube, mitochondria and plastids of the tube can be identified in the synergid as can hundreds of 0.5 μ polysaccharide spheres liberated by the tube. The method by which the sperm or sperm nuclei enter the egg or central cell is not known although an apparent rupture was found in the wall of the egg near the tip of the pollen tube. The second synergid changes at the time the pollen tube enters the first synergid. These changes result in the disorganization of the nucleus and loss of the chalazal wall and plasma membrane. Eventually this synergid loses its identity as its cytoplasm merges with that of the central cell.  相似文献   

11.
No acid phosphatase activity was observed in the mature embryo sac of wheat (Triticum aestivum) except the chalazal cytoplasm Of the central cell before fertilization. During fertilization, acid phosphataseactivity was observed in the following loci: part of chromatin of the egg nucleus and most of the mitochondria in the egg cytoplasm; the perinuclear spaces of the egg and sperm nuclei at the fusion of the egg and sperm nuclei; the chalazal cytoplasm and some vacuoles of the degenerated synergid; two sperm nuclei within the cytoplasm of female cells; the cell wall of each cell of the embryo sac and that of the nucellar cells surrounding the embryo sac. No acid phosphatase was observed in the two-celled proembryo. Dense enzyme reaction product was localized in the chromatin of the free nuclei at early stage of the endosperm. The characteristic of acid phosphatase distribution during fertilization may be associated with the physiological change of the egg Cell, the reorganization of mitochondria in the egg cell cytoplasm, the degeneration of one of the two synergids, the physiological state of the sperm nuclei and the nuclear membrane fusion of the egg and sperm nuclei.  相似文献   

12.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

13.
以甜菜无融合生殖单体附加系M14(Betavulgaris,2n=18+1)为实验材料,利用电子显微镜技术对成熟胚囊及其超微结构进行研究。结果表明:M14成熟胚囊包括1个卵细胞、2个退化的助细胞、1个具有次生核的中央细胞和3-6个反足细胞。其卵细胞具有3种不同的形态:(1)极性正常的卵细胞,细胞核位于合点端,细胞质含有大量核糖体、线粒体、内质网等细胞器;(2)细胞核位于细胞中央;(3)细胞核位于珠孔端,且后2种形态细胞器的种类与数量少。大多数胚囊中的2个助细胞在开花前已退化。中央细胞的次生核位于反足细胞附近;未经受精自发分裂前的卵细胞与中央细胞的细胞核大、核仁明显,细胞器的种类与数量多,呈现旺盛代谢活动特征,成为二倍体孢子无融合生殖过程中,卵细胞与次生核自发分裂的细胞学标志。  相似文献   

14.
以甜菜无融合生殖单体附加系M14(Beta vulgaris, 2n=18+1)为实验材料, 利用电子显微镜技术对成熟胚囊及其超微结构进行研究。结果表明: M14成熟胚囊包括1个卵细胞、2个退化的助细胞、1个具有次生核的中央细胞和3-6个反足细胞。其卵细胞具有3种不同的形态: (1)极性正常的卵细胞, 细胞核位于合点端, 细胞质含有大量核糖体、线粒体、内质网等细胞器; (2)细胞核位于细胞中央; (3)细胞核位于珠孔端, 且后2种形态细胞器的种类与数量少。大多数胚囊中的2个助细胞在开花前已退化。中央细胞的次生核位于反足细胞附近; 未经受精自发分裂前的卵细胞与中央细胞的细胞核大、核仁明显, 细胞器的种类与数量多, 呈现旺盛代谢活动特征, 成为二倍体孢子无融合生殖过程中, 卵细胞与次生核自发分裂的细胞学标志。  相似文献   

15.
B. -Q. Huang  S. D. Russell 《Planta》1994,194(2):200-214
The cytoskeletal organization of the embryo sac of tobacco (Nicotiana tabacum L.) was examined at maturity and during synergid degeneration, pollen-tube delivery and gamete transfer using rapid-frozen, freeze-substituted and chemically fixed material in combination with immunofluorescence and immunogold electron microscopy. Before fertilization, the synergid is a highly polarized cell with dense longitudinally aligned arrays of microtubules adjacent to the filiform apparatus at the micropylar end of the cell associated with major organelles. The cytoskeleton of the central cell is less polarized, with dense cortical microtubules in the micropylar and chalazal regions and looser, longitudinally oriented cortical microtubules in the lateral region. In the synergid and central cell, F-actin is frequently found at the surface of the organelles and co-localizes with either single microtubules or microtubule bundles. Egg cell microtubules are frequently cortical, randomly oriented and more abundant at the chalazal end of the cell; actin filaments are associated with microtubules and the cortex of the egg cell. At 48 h after pollination and before the pollen tube arrives, the onset of degeneration is evident in one of the two synergids: the electron density of cytoplasmic organelles and the ground cytoplasm increases and the nucleus becomes distorted. Although synergids otherwise remain intact, the vacuole collapses and organelles degenerate rapidly after pollen-tube entry. Abundant electron-dense material extends from the degenerated synergid into intercellular spaces at the chalazal end of the synergid and between the synergids, egg and central cell. Rhodamine-phalloidin and anti-actin immunogold labeling reveal that electron-dense aggregates in this region contain abundant actin forming two distinct bands termed coronas. This actin is part of a mechanism in the egg apparatus which appears to precisely position and facilitate the access of male gametes to the egg and central cell for fusion.Abbreviations ES embryo sac - FA filiform apparatus - Mf microfilament - Mt microtubule - PT pollen tube - RF-FS rapid-freeze freeze-substitution - TEM transmission electron microscopy We thank Gregory W. Strout for technical assistance in the use of the RF-FS technique and Dr. Hongshi Yu for providing Fig. 1. This research was supported by U.S. Department of Agriculture grants 88-37261-3761 and 91-37304-6471. We gratefully acknowledge use of the Samuel Robert Noble Electron Microscopy Laboratory of the University of Oklahoma.  相似文献   

16.
The mature embryo sac of barley consists of an egg, two synergids, a central cell, and up to 100 antipodal cells. At shedding the male gametophyte is 3-celled, consisting of a vegetative cell with a large amount of starch and two sperms having PAS+ boundaries. Before pollination the nucleus and cytoplasm of each synergid appear normal. After pollination the nucleus and cytoplasm of one synergid undergo degeneration. The pollen tube grows along the surface of the integument of the ovule, passes through the micropyle, and enters the degenerate synergid through the filiform apparatus. The pollen tube discharges the vegetative nucleus, two cellular sperms, and a variable amount of starch into the degenerate synergid. Soon after deposition the sperms migrate by an unknown mechanism to the chalazal end of the degenerate synergid. Sperm nuclei then enter the cytoplasm of the egg and central cell, ultimately resulting in the formation of the zygote and primary endosperm nucleus, respectively. Sperm boundaries do not enter egg or central cell, but it was not possible to determine the fate of other sperm components. Degenerate vegetative and synergid nuclei remain in the synergid after fertilization, constituting what are considered to be X-bodies in barley. The second synergid degenerates during early embryogeny.  相似文献   

17.
Amaranthus hypochondriacus embryo sac development was investigatedbefore and after fertilization. During the early stages of development,the young embryo sac displays three antipodal cells at the chalazalpole that degenerate very early in the maturation process, beforethe synergids and egg cell are completely differentiated. Themature embryo sac is composed only of the female germ unit.The synergid cells organize a filiform apparatus accompaniedby the presence of mitochondria and dictyosomes with numerousvesicles. The involvement of the synergids in transport andsecretory functions related to pollen tube attraction and guidance,are discussed. The egg cell is located at the micropylar polenear the synergids and displays exposed plasma membranes atthe chalazal pole. The fertilized egg cell does not exhibitmarked changes after fertilization except for the closure ofthe cell wall. The central cell is the largest cell of thisvery long embryo sac. The fused nucleus is close to the eggapparatus before fertilization and displays a remarkable chalazalmigration after gamete delivery. The ultrastructure of the centralcell cytoplasm and the numerous wall ingrowths around this cellsuggest an important role in nutrient transportation. Aftergamete delivery, the embryo sac displays electron dense bodiesthat aggregate within the intercellular space between the synergids,egg cell and central cell. These bodies, that appear in theembryo sac of several plants, are probably involved in gametedelivery for double fertilization. The possibility of biparentalinheritance of mitochondria in this plant is also discussed.Copyright 1999 Annals of Botany Company Amaranthus hypochondriacus, grain amaranth, embryo sac, fertilization.  相似文献   

18.
Ultrastructures of the mature embryo sac of Calystegia hederacea Wall. and its changes after fertilization are described. The positional organization of the egg cell, the two synergids and the central cell, as well as their interrelationships were studied. Some regions of the cell boundaries between the egg cell and the central cell, as well as between the egg cell and the synergids were devoid of typical cell wall before fertilization, displayed a feature quite similar to the characteristic absence of the cell wall in the fertilization target zone occurred in most angiosperms. Besides the genera ultrastructural characteristics of the egg apparatus and the central cell, there were several unusual aspects in C. hederacea, such as the egg nucleus located above the large vacuole near the chalazal end of the cell, many polyribosomes in the cytoplasm of the egg cell and wall ingrowths on both sides of the hooks of the central cell. All these unusual characteristics seemed to be closely associated with the short duration of the fertilization and the absence of antipodal cells in the mature embryo sac. It is concluded that the female germ unit of C. hecleracea is considered to be a topographical and physiological unit to realize their functions for successful double fertilization.  相似文献   

19.
Ultrastructure of the embryo sac lacking antipodals in prefertilization stages in Arabidopsis thaliana has been examined 2 hr before and 5 hr after manual cross pollination. The cytoplasm of both synergids before fertilization is rich in ribosomes, mitochondria, and rough endoplasmic reticulum, and also contains several microbodies and spherosomes. The filiform apparatus includes electron-dense material and a fibrous part. Many cortical microtubules appear in the filiform apparatus area. One of the two synergids degenerates before fertilization. The synergids, the egg cell, and central cell have a rich cytoskeleton of microtubules; only the synergids appear to contain microfilaments. At the chalazal end, the antipodals are initially present but degenerate by the time of pollination in most embryo sacs in the starchless line studied. The embryo sac is completely surrounded by a wall containing an electron-dense layer, separating it from the nucellus, including the chalazal end. When the antipodals have degenerated, the electron-dense layer disappears at the chalazal end only, and the wall between the central cell and the nucellus is homogeneous. Between the central cell and nucellar cells no plasmodesmata are found. The membranes of both antipodal cells at the chalazal end of the embryo sac appear sinuous, like those of transfer cells. The central cell has plastids preferentially distributed around the nucleus, but the other organelles are randomly distributed. The central cell in the embryo sac and the adjacent chalazal nucellar cells show a transfer-cell function in the embryo sac after the antipodals degenerate.  相似文献   

20.
天竺葵雌性生殖单位的超微结构   总被引:4,自引:0,他引:4  
应用透射电镜研究了临近受精时天竺葵(Pelargonium hortorum Bailey)胚囊中的卵细胞、助细胞和中央细胞的结构。证明了卵细胞与助细胞以及助细胞与助细胞之间从合点端至珠孔端有很大的面积以质膜分界,仅珠孔端少部分以壁分隔。卵细胞与中央细胞之间同样缺乏细胞壁。在卵细胞的合点端,两质膜不同程度地分离形成宽窄相间的间隙。在间隙的絮状基质中存在小泡,这些小泡的产生似与卵和中央细胞中周质内质网的活动有关。推测小泡为多糖性质,可能为合子新壁的建造提供物质。卵细胞质中含巨大线粒体,质体和内质网也较丰富。基于超微结构的特征,可认为卵细胞具高度的生理合成活动的潜能。中央细胞极核位于珠孔端与卵器细胞毗邻,有利于在双受精作用中同时发生精细胞与卵细胞和精细胞与中央细胞核的融合。中央细胞的侧壁在珠孔端形成内突,具传递细胞的特点,表明这是雌配子体向孢子体摄取营养的重要部位。助细胞的细胞质含丰富的细胞器,这与多数植物中的相似,但具几个明显的特征,即核中存在微核仁,内质网形成圆球体或脂体,线粒体富集在丝状器的附近。传粉后花粉管进入胚囊之前,两个助细胞中一个退化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号