首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long‐term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia.  相似文献   

2.
    
Abstract How often will natural selection drive parallel evolution at the DNA sequence level? More precisely, what is the probability that selection will cause two populations that live in identical environments to substitute the same beneficial mutation? Here I show that, under fairly general conditions, the answer is simple: if a wild‐type sequence can mutate to n different beneficial mutations, replicate populations will on average fix the same mutation with probability P= 2/(n + 1). This probability, which is derived using extreme value theory, is independent of most biological details, including the length of the gene in question and the precise distribution of fitness effects among alleles. I conclude that the probability of parallel evolution under natural selection is nearly twice as large as that under neutrality.  相似文献   

3.
    
Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.  相似文献   

4.
    
Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.  相似文献   

5.
6.
    
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.  相似文献   

7.
    
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.  相似文献   

8.
    
Bacterial populations can evolve and adapt to become diverse niche specialists, even in seemingly homogeneous environments. One source of this diversity arises from newly 'constructed' niches that result from the activities of the bacteria themselves. Ecotypes specialized to exploit these distinct niches can subsequently coexist via frequency-dependent interactions. Here, we describe a novel form of niche construction that is based upon differential death and cannibalism, and which evolved during 20 000 generations of experimental evolution in Escherichia coli in a seasonal environment with alternating growth and starvation. In one of 12 populations, two monophyletic ecotypes, S and L, evolved that stably coexist with one another. When grown and then starved in monoculture, the death rate of S exceeds that of L, whereas the reverse is observed in mixed cultures. As shown by experiments and numerical simulations, the competitive advantage of S cells is increased by extending the period of starvation, and this advantage results from their cannibalization of the debris of lysed L cells, which allows the S cells to increase both their growth rate and total cell density. At the molecular level, the polymorphism is associated with divergence in the activity of the alternative sigma factor RpoS, with S cells displaying no detectable activity, while L cells show increased activity relative to the ancestral genotype. Our results extend the repertoire of known cross-feeding mechanisms in microbes to include cannibalism during starvation, and confirm the central roles for niche construction and seasonality in the maintenance of microbial polymorphisms.  相似文献   

9.
    
《Evolutionary Applications》2017,10(10):1055-1066
Fungicide resistance is a constant threat to agricultural production worldwide. Molecular mechanisms of fungicide resistance have been studied extensively in the wheat pathogen Zymoseptoria tritici. However, less is known about the evolutionary processes driving resistance development. In vitro evolutionary studies give the opportunity to investigate this. Here, we examine the adaptation of Z. tritici to fluxapyroxad, a succinate dehydrogenase (Sdh) inhibitor. Replicate populations of Z. tritici derived from the sensitive isolate IPO323 were exposed to increasing concentrations of fluxapyroxad with or without UV mutagenesis. After ten increases in fungicide concentration, sensitivity had decreased dramatically, with replicate populations showing similar phenotypic trajectories. Sequencing the Sdh subunit B, C, and D encoding genes identified seven mutations associated with resistance to fluxapyroxad. Mutation frequency over time was measured with a pyrosequencing assay, revealing sequential lineage replacement in the UV‐mutagenized populations but not in the untreated populations. Repeating selection from set time‐points with different fungicide concentrations revealed that haplotype replacement of Sdh variants was driven by dose‐dependent selection as fungicide concentration changed, and was not mutation‐limited. These findings suggest that fungicide field applications may select for highly insensitive Sdh variants with higher resistance factors if the fungicide concentration is increased to achieve a better disease control. However, in the absence or presence of lower fungicide concentrations, the spread of these strains might be restricted if the underlying Sdh mutations carry fitness penalties.  相似文献   

10.
    
We studied the evolution of the correlation between growth rate r and yield K in experimental lineages of the yeast Saccharomyces cerevisiae. First, we isolated a single clone every approximately 250 generations from each of eight populations selected in a glucose‐limited medium for 5000 generations at approximately 6.6 population doublings per day (20 clones per line × 8 lines) and measured its growth rate and yield in a new, galactose‐limited medium (with ~1.3 doubling per day). For most lines, r on galactose increased throughout the 5000 generations of selection on glucose whereas K on galactose declined. Next, we selected these 160 glucose‐adapted clones in the galactose environment for approximately 120 generations and measured changes in r and K in galactose. In general, growth rate increased and yield declined, and clones that initially grew slowly on galactose improved more than did faster clones. We found a negative correlation between r and K among clones both within each line and across all clones. We provide evidence that this relationship is not heritable and is a negative environmental correlation rather than a genetic trade‐off.  相似文献   

11.
Nutrient limitation of epilithic microbial activity is modified by stream discharge and drainage from the tundra surrounding the Kuparuk River, Alaska, USA. During 1984, after three weeks of whole stream enrichment with phosphorus, autotrophic activity per unit biomass had increased in the enriched section of the stream suggesting that phosphorus availability was limiting productivity. In contrast, after three weeks of phosphorus enrichment during 1985, heterotrophic and autotrophic activity was similar in the control and enriched sections of the stream. However, when ammonia or nitrate and phosphorus were added to an in situ bioassay chamber for two weeks, higher community biomass and heterotrophic activity resulted. Ten days later biomass significantly dropped in the unenriched section. Nitrate levels over this period increased four fold concomitantly with decreased stream discharge. Apparently during 1985, nitrogen was limiting epilithic microbial community in the phosphorus enriched section of the Kuparuk River. The significant negative relationship between nitrate concentration and stream discharge observed during 1984 supported the trends seen in 1985. These data suggest that nutrient concentrations which limit epilithic microbial activity and biomass are regulated by the stream discharge and drainage from the surrounding tundra.  相似文献   

12.
13.
    
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.  相似文献   

14.
    
  相似文献   

15.
    
The geographical distribution of sexual and related asexual species has been suggested to correlate with habitat stability; sexual species tend to be in stable habitats (K‐selection), whereas related asexual taxa tend to be in unstable habitats (r‐selection). We test whether this broad‐scale pattern can be re‐created at a microevolutionary scale by experimentally evolving populations of facultatively sexual rotifers under different ecological conditions. Consistent with the pattern in nature, we find that the rate of sex evolves to lower levels in the r‐selected than in K‐selection environments. We consider several different explanations for these results.  相似文献   

16.
    
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

17.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

18.
Corradi N  Charest C 《Molecular ecology》2011,20(16):3289-3290
Humans are notorious for disturbing terrestrial ecosystems worldwide, especially those that are in close proximity to urban areas. This disturbance has involved the accumulation of various types of chemical pollutants, of either agricultural or industrial origins, in both soil and water ecosystems. Pollutants have sometimes included essential plant nutrients, such as phosphate and nitrate, which have piled up throughout the years in many ecosystems as a consequence of aggressive agricultural practices, and a number of toxic or trace metals, e.g. iron, nickel or zinc that are important at low levels for the fitness of living organisms, but otherwise toxic at high concentrations ( Ker & Charest 2010 ; Audet & Charest 2008 ). In order to reduce the load of toxic elements, scientists have used the natural capacity of several plant species to sequestrate them from the soil and, ultimately, render them harmless. This process, called phytoremediation, is rather slow, as most plants take years to build up their biomass but has been shown to be ‘boostable’ under experimental conditions in the presence of a particular group of plant symbionts in the soil – the arbuscular mycorrhizal fungi (AMF) ( Gohre & Paszkowski 2006 ). These latter organisms are now widely recognized as being very beneficial for purposes of phytoremediation, but their biodiversity in the most disturbed ecosystems is still virtually unknown. Are these fungi really abundant in heavily polluted soils, or are their communities shrunken down like those of other microorganisms in the presence of heavy pollution? In this issue of Molecular Ecology, the study by Hassan et al. (2011) provides answers to these specific questions by determining the extent of AMF biodiversity across several urbanized areas in the City of Montréal.  相似文献   

19.
Riley EM  Viney ME 《Molecular ecology》2011,20(23):4827-4829
The immune system has evolved, and continues to evolve, in response to the selection pressure that infections exert on animals in their natural environments, yet much of our understanding about how the immune system functions comes from studies of model species maintained in the almost complete absence of such environmental selection. The scientific discipline of immunology has among its aims the improvement of human and animal health by the application of immunological knowledge. As research on humans and domesticated animals is highly constrained-ethically, logistically and financially-experimental animal models have become an invaluable tool for dissecting the functioning of the immune system. The house mouse (Mus musculus) is by far the most widely used animal model in immunological research but laboratory-reared mice provide a very narrow view of the immune system-that of a well-fed and comfortably housed animal with minimal exposure to microbial pathogens. Indeed, so much of our immunological knowledge comes from studies of a very few highly inbred mouse strains that-to all intents and purposes-our immunological knowledge is based on enormously detailed studies of very small numbers of individual mice. The limitations of studies in inbred strains of laboratory mice are well-recognized (Pedersen & Babayan 2011), but serious attempts to address these limitations have been few and far between. However, the emerging field of 'ecological immunology' where free-living populations are studied in their natural habitat is beginning to redress this imbalance (Viney et al. 2005; Martin et al. 2006; Owen et al. 2010; Abolins et al. 2011). As demonstrated in the work by Boysen et al. (2011) in this issue of Molecular Ecology, studies in wild animal populations-especially free-living M. musculus-represent a valuable bridge between studies in humans and livestock and studies of captive animals.  相似文献   

20.
    
The production of beneficial public goods is common in the microbial world, and so is cheating – the exploitation of public goods by nonproducing mutants. Here, we examine co‐evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron‐scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co‐exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co‐existence was fostered by a combination of general adaptions to the media and specific adaptions to the co‐evolving opponent. Phenotypic screening and whole‐genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine‐signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co‐existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号