首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鹅掌楸种子和胚胎发育的研究   总被引:23,自引:0,他引:23  
应用控制授粉、软 X-射线法、常规石蜡制片法和荧光检测等手段,研究了鹅掌楸(Lirio-dendron chinense(Hemsl.)Sarg.胚胎发育和控制授粉与结籽率的相关性。控制授粉后2小时花粉萌发,6小时萌发率最高,柱头可授期持续30小时左右。花粉管借助于柱头毛之间的分泌物进入柱头沟,经花柱沟、珠孔塞和珠心冠原进入胚囊,行珠孔受精。授粉后2周,胚乳为2至3细胞厚的狭组织;第6周,胚乳充满胚囊腔,珠心随之解体殆尽;第7到8周,球形胚、心形胚发生;第14到16周,子叶形成;第22周种子或熟,胚乳丰富。单株自然授粉结籽率不足1%。控制授粉后,单个聚合果的最高结籽率可达39%,9个聚合果的平均结籽率为17.7%。  相似文献   

2.
腊梅(Chimonanthus praecox)花两性,离心皮雌蕊着生在杯状花托上,柱头线形,干性。花粉经昆虫传播,落在柱头上1 d后萌发,第8d从珠孔进入,第14d左右完成双受精,为珠孔受精。胚乳为核型胚乳;初生胚乳核经短暂休眠进行核分裂,位于合点端的游离核首先形成细胞,并从合点向珠孔端细胞化,第37d胚乳充满整个囊腔。合子经过近2周的休眠后开始分裂,随着胚的发育,大部分胚乳降解,为胚的发育提供营养。合点端的胚乳细胞则侵入合点珠心组织,为胚进一步发育提供营养。其胚胎发生为柳叶菜型。  相似文献   

3.
腊梅的受精作用及胚胎发生   总被引:4,自引:0,他引:4  
腊梅 (Chimonanthuspraecox)花两性 ,离心皮雌蕊着生在杯状花托上 ,柱头线形 ,干性。花粉经昆虫传播 ,落在柱头上 1d后萌发 ,第 8d从珠孔进入 ,第 1 4d左右完成双受精 ,为珠孔受精。胚乳为核型胚乳 ;初生胚乳核经短暂休眠进行核分裂 ,位于合点端的游离核首先形成细胞 ,并从合点向珠孔端细胞化 ,第 37d胚乳充满整个囊腔。合子经过近 2周的休眠后开始分裂 ,随着胚的发育 ,大部分胚乳降解 ,为胚的发育提供营养。合点端的胚乳细胞则侵入合点珠心组织 ,为胚进一步发育提供营养。其胚胎发生为柳叶菜型。  相似文献   

4.
A homozygous self-compatible almond, originated from self-fertilization of a self-compatible genotype and producing a reasonable yield following open pollination, exhibited a very high fruit drop rate when self-pollinated. To investigate whether fruit dropping in this individual is related to an abnormal development of the embryo sac following self-fertilization, histological sections of ovaries from self and cross-pollinated flowers were observed by light microscopy. Additionally, the presence of pollen tubes in the ovary and fruit set were determined for both types of pollination. Despite pollen tubes reached the ovary after both pollinations, differences in embryo sac and endosperm development after fertilization were found. Thus, while for cross-fertilized ovules a pro-embryo and an endosperm with abundant nuclei were generally observed, most self-fertilized ovules remained in a previous developmental stage in which the embryo sac was not elongated and endosperm nuclei were absent. Although 30 days after pollination fruit set was similar for both pollination types, at 60 days it was significantly reduced for self-pollination. These results provide evidence that the high fruit drop in this genotype is the consequence of a disrupted development of the endosperm, what could be an expression of its high level of inbreeding.  相似文献   

5.
‘晚大新高’梨授粉及受精过程的显微动态研究   总被引:4,自引:1,他引:3  
应用荧光显微法和石蜡切片解剖法对‘晚大新高’梨授粉受精过程进行了系统观察研究。结果表明:‘晚大新高’梨自花授粉不结实;异花最佳授粉品种为‘黄花’,其次为‘翠冠’和‘丰水’。与选用‘黄花’为异花授粉品种相比,自花和异花的授粉受精过程存在明显差异,自花花粉在授粉后2h开始萌发,8h花粉管生长至离柱头约1/3处停止生长,顶端膨大呈球形,表现出自交不亲和性;异花花粉在授粉后1h开始部分萌发,8h花粉管生长至花柱中部,24h到达花柱基部并进入子房,48h进入胚囊,72h完成双受精过程。  相似文献   

6.
1.The pollen germination of Sorghum vulgate appeared normal on the stigma of the Oryza sativa, but the pollen tubes grew slowly in the style. Some of the pollen tubes may become enlarged in their tips or sometimes bursting, while others have continued to grow and entered the embryo sacs. 2. The growth rate of the pollen tubes varied widely. A few pollen tubes were observed in the embryo sacs of the materials 2 hours after pollination, but most of them entered the embryo sacs much later. 3. The zygote associated with a paucity of endosperm nuclei was observed in the materials 1 day after pollination. The double fertilization and 8–12-celled proembryo associated with a number of the free nuclei of the endosperm appeared with a rather high frequency (10.3%) in the materials 3 days after pollination. Some of them are normal in appearance and others may show more or less abnormalities. 4. No division figure was found except in one single case in which mitoses have occurred in both the proembryo and the endosperm. It is most likely that in such case the proembryo and the endosperm if left intact might develop further. 5. A 80-celled embryo was the biggest one which appeared in the materials 5 days after pollination. In general, no cells were ever formed in the endosperm, except in one instance among the 7 days materials the endosperm became cellular in micropylar end. In all other cases the endosperm either ceased to develop early or disorganized. The disorganized endosperm materials are considered to be utilized by the embryo. 6. In certain instances the free nuclei of the endosperm were not distributed at random. They were not equal in size and might fuse into giant nuclelei. 7. The most striking feature is that in the embryo sacs, in which double fertilization or proembryo and endosperm have occurred, a dark stained pollen tube was commonly present. This fact leads us to the conviction that in general only if a healthy pollen tube entered the embryo sac, double fertilization can take place and further development can proceed. 8. In certain cases the protoplasm of the embryo cells appeared scanty. It is apparently that the normal metabolism of the embryo was disturbed owing to the lack of nutrient, and the death of the embryo ensued. 9. No differentiated embryo was observed and no mature seeds were produced. The materials fixed 12 days after pollination showed a variety of abnormalities and collapses. The authors believe that the failure of seed production of rice X kaoliang was primarily due to the fact that the pollen tubes in the style grew too slowly to reach the embryo sacs in time. The consequence is that the double fertilization took place only in a late stage while the male and female gametes may have already become unhealthy. In addition, in this late stage the stored starch in the maternal tissues having gradually disappeared, the nutrient supply to the embryo sac was therefore limited and the young embryo and endosperm were finally in starvation.  相似文献   

7.
The double fertilization and embryo development of P. lasiocarpa were studied using cytochemical method for DNA, RNA, polysaccharides and proteins. Stigmas were covered by secretion stained positively with PAS and mercuric bromphenol blue at receptive stage. The pollen grains germinated on the stigma in large quantities 6 hours after pollination. Fertilization started at the 6th days after pollination. The sperm nucleus fused with the secondary nucleus faster than the sperm nucleus with the egg nucleus. The syngamy belonged to peremitotic type. A great deal of starch grains in the embryo sac disappeared during fertilization. The endosperm was nuclear type and becomed a cel 31 days after pollination. The endosperm was characterized by a dense cytoplasm rich in protein. No discrete starch grains were observed in endosperm. Afterwards, the endosperm was consumed by the developing embryo, thus the mature seeds were non-endospermous. The zygote was dormant for 6–8 days. During the dormency, many striking changes took place, and then, the zygotes showed more pronounced polarity. These changes included the shinkage of the large vacuole, the reduced size, the reappearance of large vacuole, the enlarging of the size. The embryogenesis conformed to the Solanad type. The ovules matured into seeds successively 44 days after pollination. The mature embryo was straight. Two cotyledons folded each other.  相似文献   

8.
Pollen tube growth from the stigma into the ovule, and the early fruit and seed development following fertilization were examined using fluorescence microscopy, scanning electron microscopy and light microscopy inPetunia inflata. After growing intercellularly in the transmitting tract for 24–36 hr, the pollen tubes emerged into the top part of the ovary cavity and grew along the surface of the septum to reach the ovule. It grew around the furnicle and penetrated the micropyle to enter the embryo sac for fertilization. After fertilization, the endosperm nucleus divided first before the embryo, and the cell wall formation occurred following the division, exhibiting the pattern of cellular type of endosperm development. The first division of the zygote did not occur until 3 days after pollination. At 6 days after pollination, the seeds grew considerably and the endosperm has gone through multiple rounds of cell division. High starch formation in the integument, especially around the embryo sac, was also observed.  相似文献   

9.
This paper deals with the development of the embryo and the formation of the fruit for lpomoea batatas Lam. based on the observation of its flower bud differentiation, megasporogenesis and the development of the female gametophyte, microsporogenesis and the development of the male gametophyte. The pollen grain germinated on the stigma about 10–30 min. after pollination. The pollen tube penetrated the transmitting tissue in the middle of the style between 30–60 min. after pollination. After 2 hours the tip of the pollen tube reached the micropyle. Double fertilization completed after 5 or 12 hours then the zygote and the endosperm nucleus formed. The first mitotic division of the endosperm nucleus takes place about 12 hours after pollination, earlier about 3 hours than the first division of the zygote, the latter gives rise to a terminal cell and a basal cell by a transverse division. The second division is transverse in the terminal cell, forming two cells. The basal cell divides longitudinally into two adjoining cells. The terminal cell becomes the proembryo with four cells, and at the same time, the basal cell becomes the suspensor with four cells after 41–52 hours. The proembryo gradually becomes globular, cordate and torpedo-shaped, respectively about 96–120, 144–156, 168-192 hours after pollination. The cotyledons of the embryo gradually prolongate 10 days after pollination. The embryo almost completes its development within 21–30 days after pollination. he fruit is a capsule. The ovary gradually swells 3–4 days after pollination, then forms fruit, which ripens about 21–30 days after pollination, 2R.=4–8 mm. A fruit contains 1–4 seeds. 7,000 fruits were analysed in 1983, the results are as follows: 64.6% of then with only one seed in a capsule, 31.8% two seeds, 5.48% three seeds and 0.1% four seeds. The seeds are small, 2R. from 3.84 mm to 2.84 mm. The shape and the weight of the seeds are different from each other because of difference in number of seeds within a capsule.  相似文献   

10.
The whole process of double fertilization in sugar beet has been observed, the main results are as follows: About 2 hours after pollination, the pollen grains germinate, the sperms in the pollen tube are long-oval. 15 hours after pollination, the pollen tube destroys a synergid and releases two sperms on one side or at the chalazal end of the egg cell. The sperms are spherical each having a cytoplasmic sheath. 17 hours after pollination, one sperm enters the egg cell, and the sperm nucleus fuses with the egg nucleus rapidly. 21 hours after pollination, the zygote is formed. In the meantime, the primary endosperm nucleus has divided into two free endosperm nuclei. 25 hours after pollination, the zygote begins to divide, forming a two-celled proembryo. The dormancy stage of the zygote is about 4 hours. In the meantime the endosperm is at the stage of four free nuclei. 17 hours after pollination, the sperm nucleus comes into contact and fuses with the secondary nucleus. The sperm nucleus fuses with the secondary nucleus, faster than the sperm with the egg. he first division of the primary endosperm nucleus is earlier than that of the zygote, it takes place about 20 hours after pollination, the dormancy stage of the primary endosperm is about 2 hours. The endosperm is free nuclear. The fertilization of sugar beet belongs to premitotic type of syngamy. From the stage of zygote to the two-celled proembryo, it can be seen that addition- al sperms enter the embryo sac, but polyspermy has not been observed yet.  相似文献   

11.
12.
利用整体染色激光扫描共聚焦显微镜术(WCLSM),对采自广东省高州市6个地点共141个编号的高州普通野生稻的成熟胚囊育性和胚囊形成发育特点等进行研究。结果表明,供试的绝大多数高州普通野生稻材料成熟胚囊均存在不同程度的育性异常现象,包括雌性生殖单位退化、极核位置异常、极核数目异常、胚囊退化等。这些异常结构的胚囊由于没有正常的卵细胞,不能正常受精,影响子粒结实。141个编号平均异常胚囊频率为11.11%,最高异常率为67.86%。高州普通野生稻胚囊发育过程与正常栽培稻一致,属寥型。对一些结实率偏低材料的研究,发现在胚囊发育过程的不同时期存在一些异常现象,包括功能大孢子退化,二至八核胚囊发育异常等。对柱头上的花粉量调查,发现观察的69个编号中,多数编号柱头上花粉量偏少。研究表明,花粉量偏少影响受精是导致结实率偏低的最主要原因之一。本文对导致结实率偏低的综合因素进行了讨论。  相似文献   

13.
番茄受精作用及其间隔期的研究   总被引:1,自引:0,他引:1  
王秋红  申家恒 《植物研究》2005,25(3):289-297
利用常规石蜡切片法研究了番茄受精作用的全过程,具体研究结果为:(1)授粉后2 h,花粉粒在柱头上萌发;约2~4 h,花粉管长入柱头,且末端膨大;约8 h后,生殖细胞进入分裂期;并于约两小时后,分裂为两个精细胞。(2)约14 h,花粉管进入子房腔;约18~24 h,花粉管进入胚囊,破坏一个助细胞,并在其珠孔端释放两个精子;随后被释放的精子移到卵细胞与次生核附近。(3)授粉后约30 h精核进入卵细胞;约34 h,精核与卵核融合,并在卵核内出现分散的雄性染色质,进而出现雄性核仁;44~50 h,雌、雄性核仁融合,形成合子;合子的休眠期为10 h左右。60 h之后,合子分裂形成二细胞原胚。(4)约26 h,另一个精子的精核与次生核核膜相贴伏,随后与之融合;约30~34 h,次生核内出现分散的雄性染色质,随之出现雄性核仁;约38~42 h,雌、雄性核仁融合,形成初生胚乳核。约44 h后,初生胚乳核进行有丝分裂,形成两个胚乳细胞。番茄胚乳发育属于细胞型。初生胚乳核无休眠期。(5)精子与次生核的融合比与卵核的融合快。(6)番茄的受精作用属于有丝分裂前配子融合类型。  相似文献   

14.
The pollen tube behaviour in the style and early embryogenesis following interspecies pollination between Actinidia deliciosa No. 26 and A. arguta were observed by means of fluorescence and light microscopy. Pollen grains germinated on the papillate stigma and pollen tubes grew along the V-shaped open-type style. Pollen tubes showed slower growth and reached the ovules 50--60 hours later than those of the control. Several abnormalities of pollen tubes have been observed at the base of the style, including wave-like pollen tubes, pollen tubes with swollen or pointed tips, with variable diameters, and a few with irregular growth. Random deposition of callose along pollen tube wall and even the whole wall was observed. About 26.74 % of the ovules were successfully fertilized and developed into seeds, among them 68.50% of the seeds were normal and 31.50% were abortive. About 11.41% were empty seeds without embryo and endosperm. Unfertilized small ovule was 61.45 %. Normal seed and its embryo were smaller than those of the control. The development of embryo was of the Soland type. The endosperm was cellular. The zygote remained quiescent for about 12-15 days before it started to divide, eventually forming a cotyledonary embryo 50 days after pollination.  相似文献   

15.
Evidence of Dichogamy in Santalum album L.   总被引:1,自引:0,他引:1  
Flowering, fruit set, embryological development, and pollination trials were Investigated In Santslum album L. Each ovary may have three to four ovules. Mlcrosporogenesls and megasporogenesls In the same flower were synchronized at the earlier stages of flower development. However, at anthesls, when pollen was mature, the magaspore had developed only to the stage of a one- to two-nucleus embryo sac. As the eight-nucleus embryo sac developed, some mamelon cells began to undergo programmed cell death, forming holes Into which the eight-nucleus embryo sacs extended, becoming "N" or "S" shaped. The development from a two-nucleus embryo sac to a matured eight-nucleus embryo sac lasted up to 10 d. Fruit-set from open pollination was less than 2%. The endosperm develops prior to division of the zygotic embryo and one to three embryos and endosperms were formed In the same fruit. A mature seed usually germinates to produce one seedling; however, two and three seedlings from one seed were also observed, albeit at a low frequency. Pollination trials showed that no seed sets when Inflorescences were covered with s bag; however, artificial pollination could Improve fruit set. Our pollinaUon trials and embryological studies proved that the flower of S. album Is dlchogamous and fruit set has high heterozygosity.  相似文献   

16.
云南野山茶与金花茶杂交有性过程的观察   总被引:3,自引:0,他引:3  
作者对云南野山茶与金花茶种间杂交的有性过程进行了观察,得到如下结果: 1.金花茶花粉粒在野山茶柱头上于授粉后4小时开始萌发。花粉管在花柱中的伸长基本正常。 2.双受精于授粉25—30天前后发生。杂种幼胚及胚乳早期的发育较为正常,授粉后第85天杂种胚与对照相比较,在胚的分化程度和胚乳的发育方面都未见明显差异,所观察到的胚有70%以上进入了鱼雷期。 3.授粉第90天以后,幼胚胚芽开始分化,自交胚生长发育极为迅速,而杂种胚在生长和分化方面都显著地迟缓下来。这可能是杂种胚与母体组织遗传和生理上的某些不协调所致。因此适时地进行杂种幼胚的离体培养,对育种工作是十分必要的。  相似文献   

17.
Torenia fournieri Lind. has a naked embryo sac that protrudes from the micropyle. The precise time course of the entire process of double fertilization and the kinetics of fertilization events were determined in this species by the following methods: (i) without squashing, pollen tubes on the torn stylar canal were observed by fluorescence microscopy after staining with both 4′,6-diamidino-2-phenylindole (DAPI) and aniline blue; and (ii) large numbers of living embryo sacs were observed directly by differential interference microscopy before and after fertilization. The pollen began to germinate 5 min after pollination and extruded pollen tubes which elongated at a constant rate of 2.3 mm · h−1. At 4.0 h after pollination, the mitotic index of the generative cell within the pollen tube reached 88% and the two sperm cells were formed. Pollen tubes began to arrive at ovules 8.9 h after pollination and directly entered one of two synergids in the naked embryo sac. The time required for transport of sperm cells in the degenerated synergid was estimated statistically to be 1.9 ± 1.8 min for transport of the first cell and 7.4 ± 1.6 min for the second. In the nucleus of the fertilized egg cell, the male nucleolus began to emerge 10 h after pollination and the female nucleolus often decreased in size. The two nucleoli fused together prior to elongation of the zygote, which began 28 h after pollination. In the central cell, the secondary nucleus migrated to a region adjacent to the egg apparatus after pollination but prior to the arrival of the pollen tube. The primary endosperm nucleus rapidly returned to the inner region after fertilization. Prior to embryogenesis, the first division of the primary endosperm began about 15 h after pollination, at a defined site, to form the chalazal haustorium. Received: 24 October 1996 / Accepted: 13 March 1997  相似文献   

18.
Flowers ofPlatanthera bifolia were hand-pollinated and fixed in FPA50 after 2, 5, 7, 14, and 21 days. Ovules, made transparent in Herr's clearing fluid, were investigated using confocal scanning laser microscopy. Pollination initiates the megasporogenesis. Two days after pollination dyads are frequent. Three days later most embryo sacs contain two nuclei. Seven days after pollination the embryo sacs are 4–8-nucleate and some are organized, and a week later all embryo sacs are organized and fertilization takes place. The embryo sac development follows thePolygonum type. Twenty-one days after pollination the egg nuclei have been fertilized and the embryo sacs contain 2- to many-celled embryos. A suspensor is formed during early stages of embryo development but degenerates later. Fertilization of the central nucleus does not lead to endosperm development.  相似文献   

19.
Haploid induction in onion can, to date, be induced only via gynogenesis by culturing unfertilized flowers, ovaries or ovules. The process of haploid embryo induction has been macroscopically well studied, but only limited data exist from microscopic examination of ovule development status at the inoculation stage and of the origin of gynogenic embryos. Microscopic studies were carried out using individual donor plants with relatively high embryo induction frequencies (45.9 embryos formed per 100 flowers, on average, for 2 years). Ovaries from flower bud culture were fixed at 1 week intervals up to the 7th week of culture. These were compared with pollinated ovaries at 1 or 2 weeks after pollination. In total, 1428 unfertilized embryo sacs were examined. The results indicate that, at the time of inoculation, ovules within ovaries 2.0–3.0 mm in diameter contained two- or four-nucleate embryo sacs in the smallest ovaries to mature embryo sacs in the largest ovaries. It seems likely that the embryos are actually induced from ovaries cultured at the immature stage. After 1 or 2 weeks in culture, the egg apparatus primarily consisted of distinctly enlarged synergids and the egg cell, which was often detached from the micropylar pole. But free nuclear endosperm was also formed. From the 2nd to 7th week in culture, formation of haploid embryos (from globular to the almost mature cylindrical stage) was detected in 5.7% of the ovules. Their origin, for several reasons, was most likely the egg cell. In addition, ovules containing endosperm only (3.6%) and ovules containing the egg apparatus (0.5%) or both endosperm and embryo (0.4%) were detected. This observation is probably unique and has not yet been reported in other species studied. Received: February 2001 / Revision accepted: 20 April 2001  相似文献   

20.
罗汉果双受精过程的细胞学观察   总被引:3,自引:1,他引:2  
薛妙男  杨小华   《广西植物》1995,15(4):358-362
罗汉果(Siraitiagrosvenori(Swingle)C.Jemey)双受精过程属有丝分裂前配子融合类型,授粉后24~48h,花粉管进入胚囊,穿过一个助细胞,放出两个精子。雌雄核融合和雄核与次生核融合同时发生在授粉后62~72,雄核与次生核融合速度快于配子融合,72h后即可见到初生胚乳核分裂。合子中的雌雄核仁在授粉后第5~6d融合,授粉后8~9d合成分裂形成二细胞胚。在双受精过程中,多次观察到有多条花粉管进入胚囊和多精入极核现象。原胚期有附加花粉管从珠孔进入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号