共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The increasing availability of prokaryotic genome sequenceshas shown that simple sequence repeats (SSRs) are widespreadin prokaryotes and that there is extensive variation in theirlength, number and distribution. Considering their potentialimportance in generating genomic diversity, we determined thedistribution of a specific group of SSRs, mononucleotide repeatsof size between 5 and 13 nt, in 157 sequenced prokaryotic genomes.The data obtained in the present study show that (i) a largenumber of mononucleotide SSRs is present in all prokaryoticgenomes investigated, (ii) shorter repeats are much more abundantthan longer repeats, and (iii) in the majority of the genomes,longer mononucleotide SSRs are excluded from coding regionsalthough we identified several organisms where mononucleotideSSRs are not excluded from the coding regions. We also observedthat some genomes contain more mononucleotide SSRs than expected,while others contain significantly less. Bacterial genomes thatcontain much less mononucleotide SSRs than expected are generallylarger and more GC-rich, while bacterial genomes that containmuch more mononucleotide SSRs than expected are in general smallerand more AT-rich. Finally, we also noted that genomes that containa high fraction of horizontally transferred genes have a lowermononucleotide SSR density and that A and T are generally overrepresentedin mononucleotide SSRs. 相似文献
4.
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5–10, located in the position
of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing
analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have
occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila. 相似文献
5.
Xavier Farr Ruben Molina Fabio Barteri Paul R H J Timmers Peter K Joshi Baldomero Oliva Sandra Acosta Borja Esteve-Altava Arcadi Navarro Gerard Muntan 《Molecular biology and evolution》2021,38(11):4948
The enormous mammal’s lifespan variation is the result of each species’ adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies, suggesting that comparative genomics can be used to complement and enhance interpretation of human genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan. 相似文献
6.
ABSTRACT: Recent reports describe the genome sequencing of Thellungiella salsuginea and Thellungiella parvula, two extremophile crucifers closely related to the stress-sensitive model plant Arabidopsis thaliana. 相似文献
7.
Matteo Chiara David S Horner Carmela Gissi Graziano Pesole 《Molecular biology and evolution》2021,38(6):2547
Effective systems for the analysis of molecular data are fundamental for monitoring the spread of infectious diseases and studying pathogen evolution. The rapid identification of emerging viral strains, and/or genetic variants potentially associated with novel phenotypic features is one of the most important objectives of genomic surveillance of human pathogens and represents one of the first lines of defense for the control of their spread. During the COVID 19 pandemic, several taxonomic frameworks have been proposed for the classification of SARS-Cov-2 isolates. These systems, which are typically based on phylogenetic approaches, represent essential tools for epidemiological studies as well as contributing to the study of the origin of the outbreak. Here, we propose an alternative, reproducible, and transparent phenetic method to study changes in SARS-CoV-2 genomic diversity over time. We suggest that our approach can complement other systems and facilitate the identification of biologically relevant variants in the viral genome. To demonstrate the validity of our approach, we present comparative genomic analyses of more than 175,000 genomes. Our method delineates 22 distinct SARS-CoV-2 haplogroups, which, based on the distribution of high-frequency genetic variants, fall into four major macrohaplogroups. We highlight biased spatiotemporal distributions of SARS-CoV-2 genetic profiles and show that seven of the 22 haplogroups (and of all of the four haplogroup clusters) showed a broad geographic distribution within China by the time the outbreak was widely recognized—suggesting early emergence and widespread cryptic circulation of the virus well before its isolation in January 2020. General patterns of genomic variability are remarkably similar within all major SARS-CoV-2 haplogroups, with UTRs consistently exhibiting the greatest variability, with s2m, a conserved secondary structure element of unknown function in the 3′-UTR of the viral genome showing evidence of a functional shift. Although several polymorphic sites that are specific to one or more haplogroups were predicted to be under positive or negative selection, overall our analyses suggest that the emergence of novel types is unlikely to be driven by convergent evolution and independent fixation of advantageous substitutions, or by selection of recombined strains. In the absence of extensive clinical metadata for most available genome sequences, and in the context of extensive geographic and temporal biases in the sampling, many questions regarding the evolution and clinical characteristics of SARS-CoV-2 isolates remain open. However, our data indicate that the approach outlined here can be usefully employed in the identification of candidate SARS-CoV-2 genetic variants of clinical and epidemiological importance. 相似文献
8.
9.
Most research concerning the evolution of introns has largely considered introns within coding sequences (CDSs), without regard for introns located within untranslated regions (UTRs) of genes. Here, we directly determined intron size, abundance, and distribution in UTRs of genes using full-length cDNA libraries and complete genome sequences for four species, Arabidopsis thaliana, Drosophila melanogaster, human, and mouse. Overall intron occupancy (introns/exon kbp) is lower in 5' UTRs than CDSs, but intron density (intron occupancy in regions containing introns) tends to be higher in 5' UTRs than in CDSs. Introns in 5' UTRs are roughly twice as large as introns in CDSs, and there is a sharp drop in intron size at the 5' UTR-CDS boundary. We propose a mechanistic explanation for the existence of selection for larger intron size in 5' UTRs, and outline several implications of this hypothesis. We found introns to be randomly distributed within 5' UTRs, so long as a minimum required exon size was assumed. Introns in 3' UTRs were much less abundant than in 5' UTRs. Though this was expected for human and mouse that have intron-dependent nonsense-mediated decay (NMD) pathways that discourage the presence of introns within the 3' UTR, it was also true for A. thaliana and D. melanogaster, which may lack intron-dependent NMD. Our findings have several implications for theories of intron evolution and genome evolution in general. 相似文献
10.
rpoC1基因编码RNA聚合酶β°亚基蛋白, 在转录过程中与DNA模板结合, 与β亚基形成的β-β°亚基复合体构成RNA合成的催化中心。以rpoC1基因为研究对象, 在贝叶斯因子大于20的条件下, 用HyPhy软件位点模型检测到3个正选择位点和541个负选择位点; 用PAML软件位点模型检测到10个正选择位点, 其中3个位点的后验概率超过99%。此外, 基于最大似然法构建64种蕨类植物的系统发育树, 结合HyPhy软件分析rpoC1基因的转换率、颠换率、转换率/颠换率、同义替换率、非同义替换率以及同义替换率/非同义替换率, 探讨rpoC1基因内含子丢失与分子进化速率的关系。结果表明, rpoC1基因内含子缺失对转换率、颠换率以及非同义替换率有一定影响。 相似文献
11.
Han Liu Chunhai Chen Maolin Lv Ning Liu Yafei Hu Hailin Zhang Erik D Enbody Zexia Gao Leif Andersson Weimin Wang 《Molecular biology and evolution》2021,38(10):4238
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation. 相似文献
12.
Exon shuffling is an essential molecular mechanism for the formation of new genes. Many cases of exon shuffling have been reported in vertebrate genes. These discoveries revealed the importance of exon shuffling in the origin of new genes. However, only a few cases of exon shuffling were reported from plants and invertebrates, which gave rise to the assertion that the intron-mediated recombination mechanism originated very recently. We focused on the origin of new genes by exon shuffling and retroposition. We will first summarize our experimental work, which revealed four new genes in Drosophila, plants, and humans. These genes are 106 to 108 million years old. The recency of these genes allows us to directly examine the origin and evolution of genes in detail. These observations show firstly the importance of exon shuffling and retroposition in the rapid creation of new gene structures. They also show that the resultant chimerical structures appearing as mosaic proteins or as retroposed coding structures with novel regulatory systems, often confer novel functions. Furthermore, these newly created genes appear to have been governed by positive Darwinian selection throughout their history, with rapid changes of amino acid sequence and gene structure in very short periods of evolution. We further analyzed the distribution of intron phases in three non-vertebrate species, Drosophila melanogaster, Caenorhabditis elegans, and Arabidosis thaliana, as inferred from their genome sequences. As in the case of vertebrate genes, we found that intron phases in these species are unevenly distributed with an excess of phase zero introns and a significant excess of symmetric exons. Both findings are consistent with the requirements for the molecular process of exon shuffling. Thus, these non-vertebrate genomes may have also been strongly impacted by exon shuffling in general. 相似文献
13.
Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees 下载免费PDF全文
Chia‐Lin Chung Tracy J. Lee Mitsuteru Akiba Hsin‐Han Lee Tzu‐Hao Kuo Dang Liu Huei‐Mien Ke Toshiro Yokoi Marylette B. Roa Mei‐Yeh J. Lu Ya‐Yun Chang Pao‐Jen Ann Jyh‐Nong Tsai Chien‐Yu Chen Shean‐Shong Tzean Yuko Ota Tsutomu Hattori Norio Sahashi Ruey‐Fen Liou Taisei Kikuchi Isheng J. Tsai 《Molecular ecology》2017,26(22):6301-6316
The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood‐decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin‐degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3‐beta‐glucan synthases in P. noxius, which may account for its fast‐growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole‐genome sequencing showed this multinucleate species contains abundant poly‐allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra‐isolate polymorphism reflect mono‐/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi. 相似文献
14.
《Cell》2022,185(16):2975-2987.e10
15.
16.
Itaru Takeda Myco Umemura Hideaki Koike Kiyoshi Asai Masayuki Machida 《DNA research》2014,21(4):447-457
Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. 相似文献
17.
Liang-Fen Yin Meng-Jun Hu Fei Wang Hanhui Kuang Yu Zhang Guido Schnabel Guo-Qing Li Chao-Xi Luo 《PloS one》2012,7(11)
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms. 相似文献
18.
19.
Dheeraj Verma Shuangxia Jin Anderson Kanagaraj Nameirakpam D. Singh Jaiyanth Daniel Pappachan E. Kolattukudy Michael Miller Henry Daniell 《PloS one》2013,8(2)
In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis. 相似文献