首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of ultrastructure and ATPase localization of the mature embryo sac in Vicia faba L. show that the egg cell has no cell wall at thechalazal end, it has a chalazally located nucleus and a large micropylar vacuole. There are many nuclear pores in the nuclear membrane. The cytoplasm is restricted around the nucleus. Dictyosome and mitochondria are few. There are some starch grains and lipid grains in the egg cytoplasm. There are no obvious differences between two synergids. No cell wall is seen at the chalazal end either, but there are some vesicles which project to vacuole of the central cell and fuse with its vacuolar membrane. Plasmodesmata connections occur within the synergid wall where it is adjacent to the central cell. The synergid has a micropylarly located nucleus and a chalazal vacuole, the nucleus is irregularly shaped. The synergid cytoplasm is rich in organelles. The filiform aparatus is of relatively heterogeneous structure. The central cell is occupied by a large vacuole and its cytoplasm is confined to a thin layer along the empryo sac wall, but is rich in various organelles, starch grains and lipid bodies. Nucleolar vacuoles are often present two polar nuclei. The nuclear membranes of two polar nuclei have partly fused. ATPase reactive product was located obviously at the endoplasmic reticulum in cytoplasm of the egg cell and central cell. The embryo sac wall consists of different density of osmiophilic layer. There are some wall ingrowths in chalazal region of the embryo sac. The long-shaped and cuneate cells of chalazal region are peculiar. Special tracks of ATPase reactive products are visible at their intercellular space which may be related to transportation of nutrients.  相似文献   

2.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

3.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

4.
李平  郑学经 《植物研究》1986,6(1):43-53
本文描述延龄草(Trillium tschonoskii Maxim.)的大孢子发生,雌配子体的形成和雄配子体的形态。胚珠为倒生型,双珠被,厚珠心型。胎座为侧膜胎座向中轴胎座的过渡类型,胶囊发育为葱型的变异型。孢原细胞直接发生于幼胚珠的珠心表皮细胞之下,孢原细胞平周分裂,形成初生周缘细胞及初生造孢细胞。初生周缘细胞分裂先于初生造孢细胞,分裂结果与珠心表皮细胞共同形成了珠心组织。初生造孢细胞进一步发育,形成大孢子母细胞。大孢子母细胞经减数第一次分裂后,即出现壁,形成二分体。一般是珠孔端二分体细胞小于合点端二分体细胞,但偶尔也见到前者大于后者的情况。在二分体形成后珠孔端二分体细胞立即退化、或经减数第二次分裂后再退化(该次分裂多为斜向的)。合点端二分体细胞发育,经二核胚囊,四核胚囊,六核胚囊阶段至成熟胚囊。一般在珠孔端的周围淀粉粒丰富,并先于合点端的核进行分裂。珠孔端由二个助细胞,一个卵细胞构成卵器,助细胞具钩突,并具丝状器,两个极核。合点端常见多核仁的大核,成熟胚囊未见八核。成熟花粉粒为二细胞的,花药壁具变形绒毡层,花粉中充满淀粉粒。沼生目型胚乳。  相似文献   

5.
SYNOPSIS. Observations were made on the fine structure of Paramecium bursaria and its intracellular Chlorella symbionts. Emphasis was placed on the structure of the algae and structural aspects of the relationship between the organisms. The algae are surrounded by a prominent cell wall and contain a cup-shaped chloroplast which lies just beneath the plasma membrane. Within the cavity formed by the chloroplast are a large nucleus, a mitochondrion, one or more dictyosomes, and numerous ribosomes. The chloroplast itself is made up of a series of lamellar stacks each containing 2–6 or more thylakoids with a granular stroma and starch grains intercalated between the stacks. The thylakoid stacks of mature algae are frequently more compact than those of recently divided algae. A large pyrenoid is located within the base of the chloroplast. It is made up of a granular or fibrillar matrix surrounded by a shell of starch. The matrix is bisected by a stack of 2 thylakoids. Prior to the division of the chloroplast the pyrenoid regresses; pyrenoids subsequently form in the daughter chloroplasts thru condensation of the matrix material and the reappearance of a starch shell. This shell appears to be formed by the hollowing-out of starch grains already present in the chloroplast stroma. Accordingly, in this case, starch moves from the stroma to the pyrenoid. The algae are located thruout the peripheral cytoplasm of the Paramecium. Each alga is located in an individual vacuole except immediately following division of the algae when the daughter cells are temporarily located in the vacuole which harbored the parental cell. Shortly thereafter the vacuole membrane invaginates, thereby isolating the daughter algae into individual vacuoles. Degenerating symbiotic algae are seen; because these are frequently found in vacuoles with bacteria, they are presumed to be undergoing digestion. Due to the conditions of culture these algae could have been either of intracellular or extracellular origin.  相似文献   

6.
Observed in this paper was the development of the microspore and megaspore, male and female gametophytes in Sinojakia xylocarpa, which is endemic to China. The anther comprises four microsporangia. Microspore wall forms simultaneously after meiotic division in PMCs. The arrangment of microspore in a tetrad is tetrahedral. Bicel lular pollen grains appear at the shedding stage. ‘They are 3-colporate, with irregular min ute-faveolate exine sculpture. The anther wall development is of the dicotyledonous type, and its endothecitum develops slight fibrous thickenings, which also form on some epidermal cells. The tapetum is glandular. The pistil with hollow style is composed of three carpels, and its ovary contains several anatropous ovules. The ovule is unitegmic, tenuinucellar, but no obturator was observed. The archesporial cell functions directly as the megaspore mother cell which forms a linear tetrad, but T-shaped tetrad was found in a few ovules. A Polygonum type embryo sac forms from the functional chalazal megaspore. In the mature embryo sac, the synergids are elongate with a large vacuole at the chalazal end, but the distrihution of vacuoles in the egg cell appears random. Two polar nuclei remain in contact with each other for a spell before the fertilization and the 3 antipodal cells may persist into early postfertilzation stages. Numerous starch gra ins occur in the embryo sac. According to the present embryological studies on Sinojakia xylocarpa and the works on embryogenesis by some early embryologist, authors consider that Styracaceae, Symplocaceae, Sapotaceae and Ebenaceae are rather closely related, and we alsoconsider it reasonable to put the 4 families mentioned above in Ebenales.  相似文献   

7.
高山红景天胚胎学研究   总被引:8,自引:4,他引:4  
张萍  申家恒 《植物研究》1998,18(1):38-45
高山红景天(Rhodiola sachalinensis A.Bor.)具8个雄蕊,每个雄蕊有4个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型。形成的四分体为四面体形。花药壁由表皮、药室内壁、二层中层和绒毡层五层细胞组成,其发育方式为基本型。腺质型绒毡层,有些绒毡层细胞分裂形成不规则双层,少数细胞双核。二细胞型花粉。雌蕊由4心皮组成。边缘胎座,倒生胚珠,双珠被,厚珠心,胚珠发育中形成珠心喙。大孢子四分体线形或T -形,合点大孢子具功能。胚囊发育为蓼型。成熟胚囊中,卵细胞核、助细胞核均位于细胞的合点端,珠孔端具液泡;极核融合为次生核,并位于卵细胞合点端附近; 3个反足细胞退化。双受精属于有丝分裂前配子融合类型。胚的发育为石竹型;基细胞侵入珠孔端,形成囊状吸器。细胞型胚乳;初生胚乳核分裂形成两个细胞,其珠孔端的细胞发育成胚乳本体,合点端的细胞直接发育成具一单核的合点吸器。  相似文献   

8.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

9.
竹节参雌配子体发育的研究   总被引:2,自引:0,他引:2  
本文报道了竹节参(Panax japonicus C.A.Mey)雌配子体(胚囊)的发育过程。竹节参大孢子母细胞减数分裂产生线形排列的大孢子四分体。胚囊发育属蓼型,由合点端大孢子发育而成。游离核胚囊时期,胚囊珠孔端的细胞器种类和数量都较胚囊合点端多;胚囊合点端相邻的珠被细胞中有含淀粉粒的小质体,与胚囊珠孔端相邻的退化中的非功能大孢子中则有含淀粉粒的大质体和大类脂体。成熟胚囊中,反足细胞较早退化;极核融合成次生核;卵细胞高度液泡化,细胞器数量较少;助细胞则有丰富的细胞器和发达的丝状器。PAS反应表明,受精前的成熟胚囊中积累淀粉粒。次生核受精后,很快分裂产生胚乳游离核,到几十至数百个核时形成胚乳细胞。卵细胞受精后则要经过较长的休眠期。  相似文献   

10.
莴苣卵细胞、合子与原胚细胞中钙的分布   总被引:2,自引:1,他引:1  
用焦锑酸盐沉淀法对莴苣开花前后的卵细胞、合子与原胚细胞中的钙颗粒分布变化进行了观察。结果表明,开花前三天,刚形成的卵细胞内钙颗粒很少,开花前二天的卵细胞内钙颗粒开始增多,开花前一天的卵细胞形成了大液泡,建立了极性,细胞内的钙颗粒又减少。开花后、受精前的卵细胞的钙颗粒主要聚集在细胞核中。受精后合子中的钙颗粒又明显增多,在核质中分布一些较大的钙颗粒,在珠孔端大液泡中聚集了较多的絮状钙。二胞原胚中的钙颗粒又开始减少,多胞原胚细胞中的钙进一步减少,但原胚表面分布一层丰富的钙颗粒。探讨了钙在卵细胞分化成熟、受精以及原胚发育初期中的作用。  相似文献   

11.
The structure of ovule, female and male gametophyte, double fertilization and the distrubution of starch grains during the fertilization have been studied. The main results are as follows: ( 1 ) Ovule The ovule is anatropous, unitegmic and tenuinucellate. The nucetlus appears cylindric, since megaspores and embryo sac development, its internal cells of nucellus become disorganized, so that only a single layer of epidermal cells remains toward the side of the micropyle, On the other hand, the integument is not as long as nucellus, as a result micropyle is not formed. And no vascular bundle is found in the integument. (2) Female gametophyte The mature embryo sac is slender and is composed of an egg cell, two synergids, a central cell and three antipodal cells. The egg cell is situated slightly away from the tip of embryo sac. Some of them contain starch grains. Synergids occupy the tip of embryo sac. Its wall at micropylar region appears irregular in thickenes and irregular in ingrowths to form the filiform apparatus. The centrateell is very large, and strongly vacuolated Two polar nuclei come to contact closely with each other, but not fuse, or to fuse into a large secondary nucleus before fertilization. The polar nuclei or the secondary nucleus are usually situated at the middle-lower position of the central cell or nearer to the chalazal end above the antipodal cell. It is different from egg cell, no starch grains are found here. In most embryo sacs three antipodal cells are found. They are not as large as those in other plants of Ranunculaceae. But six antipodal cells or the antipodal cell with two nuclei may rarely be found. Like synergid, the wall of them appears not only irregularly thickened, but clearly with irregular ingrowths. In a few antipodal cells the starch garins are usually found near the nucleus. By the end of fertilization, antipodal cells become disintegrated. (3) Male gametophyte Most pollen grains are two-celled when shedding, and rich in starch grains. A few of them contain single nucleus or three-celled. (4) The double fertilization The fertilization of Kingdonia unifiora Balfour f. et W, W. Smith is wholly similar to some plants of Ranunculaceae studied. First, the pollen tube penetrates a degenerating synergid. And the pollen tube discharges its contents with two sperm nuclei into the degenerating synergid cell. One of the two sperms fuses with the nucleus of the egg, and the other fuses with two polar nuclei or the secondary nucleus of the central cell. If one sperm nucleus at first fuses with one of the polar nuclei, and then the fertilized polar nuclei again fuses with other polar nucleus. Secondly, the fertilization of the polar nuclei or the secondary nuclei completes earlier than that of the egg. The primary endosperm nucleus begins to divide earlier than the zygote. It seems that one of the sperm nuclei come to contact with egg nucleus, the other has already fused with polar nuclei or the secondary nucleus. The zygote with a single nucleolus appears until the endosperm with 16–20 cell. Thirdly, before and after fertilization there are one to some small nucleoli in egg nucleus and polar nuclei or secondary nucleus. However they increase in quantity from the beginning of the fusion of male nucleis. These nucleoli quite differ from male nucleoli by their small size, and most of them disappear at the end of fertilization. It may be concluded that the small nucleoli increase in quantity is related to the fusion of male and female nuclei. In the duration of fertilization, in ovule starch distribution is in the basal region of integument. But in embryo sac, onlysome egg cells, or zygotes contain starch grains, a part of which was brought in by pollen tube. Sometimes the starch grains are found in some synergids and antipodal cells. No starch grains are found in the central cell.  相似文献   

12.
Tetraspore development has been studied in Chondria tenuissimausing light and electron microscopy. The transformation of tetrasporangialmother cells into mature tetrasporangia involves a series ofstructural changes, especially of dictyosomes and of the nucleus.The youngest stage of tetrasporogenesis consists of a uninucleatetetraspore mother cell with synaptonemal complexes present duringearly prophase of meiosis I. Mitochondria are aggregated aroundthe nucleus, dictyosome activity is low, and proplastids occurin the peripheral cytoplasm. The cleavage furrows are initiatedalmost concomitantly with commencement of meiosis. When thecleavage furrows are initiated, spherical bodies bounded bytwo membranes are found within the cytoplasm; they develop intovacuoles with fibrillar contents (fv1), which increase in sizeduring tetraspore development by fusing with each other andwith Golgi vesicles. The Golgi vesicles and the vacuoles withfibrillar contents (fv1) contribute material to the developingtetraspore wall. During the middle stage of tetraspore formationthe vacuoles with fibrillar contents (fv1) are dominant, dictyosomeactivity increases, as well as the number of plastids and mitochondria;starch formation also increases. Stacked cisternae of the endoplasmicreticulum are found within the peripheral part of the nucleus.The same nuclear structures are also observed in tetrasporangiaof the marine red alga Gastroclonium clavalum. The final stageis characterized by the disappearance of vacuoles with fibrillarcontents (fv1) and of the stacked ER within the nucleus, presenceof straight, large dictyosomes which produce cored vesicles,an abundance of starch grains and by the formation of fullydeveloped chlorqplasts. The cored vesicles contain Thiéry-positivematerial and contribute to the formation of vacuoles with fibrouscontents (fv2) as they are dominant in the tetraspores beforetheir liberation. Rhodophlyla, Chondria, tetrasporogenesis, ultrastructure, Golgi apparatus  相似文献   

13.
以不同发育时期的凤仙花花药为实验材料,采用组织化学方法,对花药发育中的结构变化及多糖和脂滴物质分布进行观察。结果表明:(1)凤仙花的花药壁由6层细胞组成,包括1层表皮细胞,2层药室内壁细胞,2层中层细胞和1层绒毡层细胞。其中绒毡层细胞的形态不明显,很难与造孢细胞区分,且在小孢子母细胞时期退化。(2)在小孢子母细胞中出现了一些淀粉粒,但减数分裂后,早期小孢子中的淀粉粒消失,又出现了一些小的脂滴;随着花粉的发育,小孢子形成大液泡,晚期小孢子中的脂滴也消失;小孢子分裂形成二胞花粉后,营养细胞中的大液泡降解、消失,二胞花粉中又开始积累淀粉;接近开花时,成熟花粉中充满细胞质,其中包含了较多的淀粉粒和脂滴。(3)在凤仙花的花药发育中,绒毡层细胞很早退化,为小孢子母细胞和四分体小孢子提供了营养物质;其后的中层细胞退化则为后期花粉发育提供了营养物质。  相似文献   

14.
大葱卵器及受精后助细胞的超微结构   总被引:1,自引:0,他引:1  
席湘媛  栾凤柱 《云南植物研究》2001,23(1):79-84,T003,T004,T005
章丘大葱(Allium fistulosum L.cv.Zhangqiu)的卵器由1个卵细胞及2个助细胞组成,观察到不少卵器没有卵细胞,只有2个助细胞。卵细胞的核及大部分细胞质位于细胞的合点端,1个大液泡占据了细胞其他部位。卵细胞含有很多的核糖体及多聚核糖体、嵴明显的线粒体、粗面内质网、高尔基体具小泡,卵细胞似是一个活跃的细胞。细胞外被细胞壁,其合点端及侧方与助细胞共同壁不连续,助细胞有一较大的核,位于细胞膨大的部位,众多的小液泡遍布细胞中。核糖体及聚合核糖体、线粒体,粗面内质网及风心圆环状粗面内质丰富,高尔基体及小泡常见,反映了其活跃的代谢作用。助细胞合点端及侧方与卵细胞、中央细胞的共同壁不连续,与卵细胞共同壁含胞间连丝,壁不连续处,有不状多层膜结构伸入卵细胞质,显示助细胞可能对卵细胞提供营养,伟粉后,一个助细胞退化,宿存助细胞至随胚胚期尚存在,它经历了一个缓慢的退化过程,出现质壁分离,细胞质变稀,液泡扩大,细胞器逐渐减少,在椭形胚期,宿存助细胞核内的染色质及核仁消失,有细胞质侵入核内,因宿存助细胞壁变厚,细胞质出现现脂滴,宿存助细胞可能仍有合成功能,宿存助细胞壁出现若干无壁部位,细胞内的营养物质可能通过无壁部位向胚乳转运,供游离核胚乳及胚乳细胞化初期的发育。  相似文献   

15.
Aouali N  Laporte P  Clément C 《Planta》2001,213(1):71-79
Using the monoclonal antibodies JIM 5 and 7, pectin was immunolocalized and quantitatively assayed in three anther compartments of Lilium hybrida during pollen development. Pectin levels in both the anther wall and the loculus increased following meiosis, were maximal during the early microspore stages and declined during the remainder of pollen ontogenesis. In the microspores/pollen grains, pectin was detectable at low levels during the microspore stages but accumulated significantly during pollen maturation. During early microspore vacuolation, esterified pectin epitopes were detected both in the tapetum cytoplasm and vacuoles. In the anther loculus, the same epitopes were located simultaneously in undulations of the plasma membrane and in the locular fluid. At the end of microspore vacuolation, esterified pectin epitopes were present within the lipids of the pollenkitt, and released in the loculus at pollen mitosis. Unesterified pectin epitopes were hardly detectable in the cytoplasm of the young microspore but were as abundant in the primexine matrix as in the loculus. During pollen maturation, both unesterified and esterified pectin labelling accumulated in the cytoplasm of the vegetative cell, concurrently with starch degradation. In the mature pollen grain, unesterified pectin epitopes were located in the proximal intine whereas esterified pectin epitopes were deposited in the distal intine. These data suggest that during early microspore development, the tapetum secretes pectin, which is transferred to the primexine matrix via the locular fluid. Further, pectin is demonstrated to constitute a significant component of the pollen carbohydrate reserves in the mature grain of Lilium. Received: 3 July 2000 / Accepted: 19 October 2000  相似文献   

16.
The structure of embryo sac, fertilization and development of embryo and endosperm in Vigina sesquipedalis (L.) Fruwirth were investigated. Pollization occures 7–10h before anthesis, and fertilization is completed 10 h after anthesis. After fertilization, wall ingrowths are formed at the micropylar and chalazal ends of the embryo sac. Embryo development conforms to the Onagrad type, and passes through 2 or more celled proembryo, long stick-shaped, globular, heart shaped, torpedo, young embryo, growing and enlarging embryo and mature embryo. Wall ingrowths are formed on the walls of basal cells and outer walls of the cells at basal region of suspenser. The suspensor remains as the seed reaches maturity. The starch grains accumulate in the cells of cotyledons by 9–16 days after anthesis, and proteins accumulate by 12–18 days after. The endosperm development follows the nuclear type. The endosperm ceils form at the micropylar end, and remain free nuclear phase at chalazal end. The outer cells are transfer cells. Those cells at the micropylar end form folded cells with wall ingrowths. At heartembryo stage, the endosperm begins to degenerate and disintegrates before the embryo matures.  相似文献   

17.
Summary The primary phloem consists mostly of sieve cells. Procambial cells and very young sieve cells contain all the components characteristic of young nucleate cells. Increase in wall thickness, which is relatively limited, constitutes the first indication of sieve-cell differentiation. During the period of wall thickening, the plastids develop starch grains and then fibrillar inclusions. Eventually the internal lamellae of the plastids collapse. The plastids do not form crystalline inclusions. As the sieve cell approaches maturity, an extensive network of smooth, tubular endoplasmic reticulum (ER) appears and then becomes mostly parietal in distribution. At maturity, large aggregates of this ER occur at the sieve areas. These aggregates are interconnected longitudinally by the parietal network of ER. In addition to the ER, the mature, plasmalemma-lined primary sieve cell contains a degenerate nucleus, with intact nuclear envelope, plastids, and mitochondria. Dictyosomes, ribosomes, and vacuoles are lacking. P-protein is not present at any stage of development.This work was supported by U.S. National Science Foundation grants GB 8330 and GB 31417 to R. F.Evert.  相似文献   

18.
芒苞草形态学和胚胎学研究:Ⅱ.花药和胚珠发育的研究   总被引:3,自引:0,他引:3  
李平  高宝莼 《植物研究》1992,12(4):389-398
芒苞草成熟胚珠为倒生型,薄珠心,双珠被。胎座为侧膜胎座向中轴胎座的过渡类型。胚囊发育为单孢蓼型。 成熟胚囊由印器,具二极核的中央细胞及三个反足细胞组成。助细胞呈倒梨形,极性不明显,珠孔端壁有角状的丝状器。中央细胞的二极核在受精前融合为次生核。 花药具二个小孢子囊,花药壁层为单子叶型,具分泌型绒毡层,小孢子母细胞减数分裂时,胞质分裂为连续型,四分体是左右对称式排列,成熟花粉粒为二细胞的。 在花药与胚珠发育过程中,多糖物质的消长是有规律的变化。  相似文献   

19.
Summary Our investigations on Canna indica L. indicate that the pollen of this species is polymorphic: there are two types of pollen — a larger type and a comparatively smaller type. Transmission electron microscopy (TEM) revealed the presence of small vacuoles containing tannic substances in the generative cell (GC) of the larger grains: the GC of the mature grain contained a higher quantity of tannins than the GC of the immature grain. Mitochondria, lipid bodies, rough endoplasmic reticulum (RER) and microtubular bundles were present in the cytoplasm of the GC. Numerous mitochondria, lipid bodies and plastids were also present in the vegetative cell (VC), with the mitochondria clustered around the vegetative nucleus. The plastids were observed to be associated with the RER cisterns. During the maturation process, the number of starch grains contained in the plastids decreased.  相似文献   

20.
薏苡胚乳细胞化的超微结构观察   总被引:6,自引:0,他引:6  
采用透射电镜对薏苡早期的胚乳细胞化进行了研究,在胚乳游离核时期,胚乳游离核及细胞质绕中央细胞分布,游离核间没有发现胚囊壁内突、成膜体等结构。胚乳细胞化过程中初始垂周壁形成过程如下:(1)胚乳细胞质中出现液泡,使细胞质和核向中央液泡推进:(2)一对相邻细胞核间液泡成对存在,且呈垂周分布,而且两液泡间的细胞质很狭窄;(3)在这狭窄的细胞质中出现成行排列的小泡;(4)小泡融合形成细胞板,细胞板悬于两液泡  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号