首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Chromosome numbers and the morphology of members of 24 populations representing 15 species of the Sino-Himalayan endemic genus Cyananthus(Campanulaceae) were studied using karyological and numerical taxonomic techniques. The chromosome numbers of these taxa are 2n = 10, 12, 14, 24, 28, and the basic chromosome numbers for the genus are x = 5, 6, 7. All species except C. inflatus Hook. f. & Thoms. and C. microphyllus Edgew. were examined for the first time and a new ploidy level (tetraploidy) is reported in the genus. Chromosome measurement data were analyzed using cluster analysis. The relationships between three sections within Cyananthus and evolutionary trends within the genus are discussed in the light of karyological data. The cytological data suggest that Cyananthus is a relatively primitive genus in Campanulaceae and there is significant division within the genus, and polyploidization may have played an important role in the chromosome evolution and speciation of Cyananthus in the Himalayan–Hengduan Mountains.  相似文献   

2.
Shre.  KK 《植物分类学报》1997,35(5):396-433
Cyananthus Wallich ex Bentham, the only genus of Campanulaceae with superior ovary, is revised to clarify infrageneric relationships and phylogeny of the genus. Evidence obtained from the comparative gross morphology, anatomy, palynology, and karyomorpho-logy recommends a new infrageneric classification of the genus, recognizing 23 species, belonging to two subgenera, four sections and four subsections. One subgenus(Subgen. Mi-cranthus), one section(Sect. Suffruticulosi) and two subsections(Subsect. Flavi and Sub-sect. Lichiangenses)are described as new taxa. New combinations at sectional (Sect. Annui) and subsectional(Subsect. Stenolobi) ranks are also proposed. The genus Cyananthus is strictly distributed in the high mountains of China(Xizang, Yunnan and Sichuan), extending to Bhutan, Nepal and India (Kumaon-Garhwal, Assam and Sikkim), with altitudinal ranges from 2500 ~ 5300 m. It is observed that 13 species are endemic to SW China and only three species are endemic to the Himalayas( two species in Ne  相似文献   

3.
The chromosome numbers of 5 tuberous sections of Chinese Dioscorea, including 23 species and varieties, are reported in the present paper as a continuation of the previous reports. They are all polyploids with the basic number x=10. On the basis of analysis of chromosome numbers of whole genus, the rhizomatous diploid species of Sect. Stenophora Uline are presumed to be primitive taxa, while the polyploids of chromosome numbers 40-142 are considered derived groups as a result of hybridization between their ancestral diploids followed by chromosome doubling. Sect. Lasiophyton Pr. et Burk., Sect. Opsophyton UIine, Sect. Shannicorea Pr. et Burk., Sect. Combilium Pr. et Burk. and Sect. EnantiophylIum Uline may be the advanced groups. The chromosomal evolution and geographical distribution suggest that the primitivediploid might have originated in Hengduan Mountains of Asia, an old highland.  相似文献   

4.
本文利用形态解剖、孢粉学及化石资料,讨论了金粟兰科的系统;并对其起源、演化和现代分布格局形成等问题做了合理推测,主要结果如下:(l)Sarcandra和chloranthus的亲缘关系最接近,而Ascarina和Hedyosmum的系统位置最靠近.Sarcandra是金粟兰科中最原始的属,而Hedyosmum则是最进化的属。(2)金粟兰科可能于白垩纪最早期起源于木质部无导管的、具简单两性虫媒花的祖先,从这个祖先分化出虫媒两性花的Sarcandra和Chloranthus和风媒单性花Ascarina和Hedyosmum。(3)印度支那植物区和马来西亚植物区包含了金粟兰科的全部属和大部分原始种类,是金粟兰科的现代分布中心;也可能是其起源地。(4)金粟兰科起源较早容易扩散到各个大陆,随大陆解体而被带到各大洲。并随古气候、古地理的演变而发展或衰退、消亡而形成今天的分布格局。  相似文献   

5.
报道江西省植物分布新记录3属6种,为袋果草Peracarpa carnosa (Wall.) Hook. f. et Thoms.、日本对叶兰Listera japonica Bl.、齿爪齿唇兰Odontochilus poilanei (Gagnepain) Ormerod、广东齿唇兰Odontochilus guangdongensis S. C. Chen et al.、革叶茶藨子Ribes davidii Franch.和蒲桃叶冬青Ilex syzygiophylla C. J. Tseng ex S. K. Chen et Y. X. Feng,其中袋果草属Peracarpa Hook. f. et Thoms.、齿唇兰属Odontochilus Blume和对叶兰属Listera R. Br.为江西省新记录属。  相似文献   

6.
Ligusticum is a highly specialized genus in the tribe Ammineae Koch of the subfamily Apioideae. It is transitional between the tribe Ammineae Koch and the tribe Peucedaneae DC., and shows a very close affinity to the genus Selinum. In the present paper, the taxonomic history is reviewed; the external morphology, pollen morphology and geographic distribution are analysed, and its evolutionary tendencies are discussed. In addition, a key to the 34 species is provided, and economic uses reported in the literature are summarized. Ligusticum consists of over 60 species widely distributed in Eurasia and North America; the genus is typically temperate. There are two principal distribution centers, one in the Himalayas, including the Hengduan Mountains of western China, and the other in North America. Thirty-four species occur in China, most of which are distributed in the alpine belt of south-western China, with only a few species occurring in northern China. They usually grow in alpine thicket meadows or in alpine meadows. Among them are 28 species endemic to China, 4 of which are described as new in the present paper, i. e. L.yuayuanense, L.litanense, L.filifolium, and L.yunnanense. L.elatum (Edgew.) C. B. Clarke, a species of India, Afghanistan, and Pakistan, and L. thomsonii C.B.Clarke var. evolutior C. B. Clarke, of India, Pakistan and Kashmir, are reported from China for the first time. Some species are important in traditional Chinese medicine, for example, L. sinense Oliv., L. sinense Oliv. cv. Chuanxiong, L. sinense Oliv. cv. Fuxiong, L. delavayi Franch., L. jeholense (Nakai et Kitagawa) Nakai et Kitagawa, L. tachiroei (Franch. et Sav.) Hiroe et Constance, etc. The genus Tilingia was established by Regel in 1858, based on Tilingia ajanensis. The chief characters of the genus are distinct calyx teeth and carpels bearing a solitary vitta in each furrow. However, these characters do not differentiate Tilingia from Ligusticum, so that Tilingia was transferred to Ligusticum by Kozo-Poljansky in 1916. Tilingia tachiroei (Franch. et Sav.) Kitagawa was transferred to Ligusticum by Hiroe et Constance in 1958. Shan et Sheh in “F1. Reip. Pop. Sin.” Tom. 55 supported the treatment by Kozo-Poljansky and Hiroe and Constance The genus Ligusticopsis was separated from Ligusticum by Leute in 1969, based on the prominent calyx teeth of the former. Ligusticopsis included 14 species, all confined to China. But this genus has not been accepted by any other botanists since its establishment. The subdivision of Ligusticum in this paper is based mainly on the characters of involucel bracteoles and mericarps, combined with the shape and aperture types of pollen grains. The genus is divided into the following two sections. Sect.1 Ligusticum, Bracteoles linear or lanceolate, entire; mericarps slightly lateral-compressed to slightly dorsal-compressed; vittae solitary to numerous in each furrow; leaf-segments ovate, lanceolate, or linear; pollen grains mainly rhomboidal or ellipsoidal; apertures gonitreme. Sect. 2 Pinnatibracteola Pu. Bracteoles 1-3-pinnatisect or 2-3-lobed at apex; mericarps dorsal-compressed; vittae usually numerous in each furrow; leaf-segments usually linear, rarely ovate or lanceolate; pollen grains rectangular, elongate-rhomboidal, or equatorially constricted; apertures mainly peritreme, rarely gonitreme or intermediate.  相似文献   

7.
Discussed in the present paper are evolutionary trends of important morphological characters of Deutzia, systematic position of several closely related genera, geographical distribution and characteristics of floristic elements. Finally the classificatory revison of the genus is made and a key to species is given. As a result, evolutionary trends of the important morphological characters in Deutzia are suggested; petals from imbricate to valvate, stamens from indefinite to definite, filaments from edentate to dentate, ovary from half-inferior to inferior. Therefore, the section Neodeutzia with valvate corolla and infinite stamens with edentate filaments should be included in this genus. The sections Neodeutzia and Mesodeutizia seem to be better considered as primitive taxa, while the section Deutzia advanced one. There are 52 species of Deutzia in China , which are grouped into two sections ( Sect. Mesodeutzia, Sect. Deutzia), four subsections (Subsect. Deutzia, Subsect. Grandiflorae, Subsect. Stenosepalae, Subsect. Cymosae)and 17 series. Sixty- five species are so far recognised in the genus Deutzia. They are mainly distributed in E. Asia and disjunctively in N. America. China is therefore an area the richest in species of Deutzia in the world, making up 80% of the total species of this genus. The greatest concentration area is in Sichuan (23 species), Yunnan (21 species), Hubei (12 species) and Shanxi (10 species), this is boundary area between Sino-Himalayan subregion and Sino-Japanese subregion, where occur abundant species (including 39 endemic species) and diverse taxa (2 section and 4 subsection). Based on these facts it is proposed that the present center of distribution and differentiation of Deutzia be in the southern part of the Hengduan Mountains, the Qingling Range and C. China.  相似文献   

8.
The genus Oreocharis as circumscribed here consists of 27 species including 5 varieties, of which 5 species and 4 varieties are described as new in the present paper. In the work analysed were the external morphology and geographic distribution and examined under SEM were pollen exine of 22 species and seed coat of 16 species. As a result, three types of the corolla, two types of the anther, three types of the pollen exine and three types of the seed coat are distinguished here in the paper. It is discovered that the corolla in the genus is relatively stable, though diverse, and highly correlated with the characters of pollen grains and seeds. The corolla clearly bilabiate but constricted at the throat, occurring in O. auricula, O. cordatula, O. aurantiaca, etc., for an example, is correlated with smooth, reticulate pollen exine and partial tectum and the reticulate and smooth seed coat. For this reason the subdivision of the genus in the paper is mainly based on the characters of the corolla, but combined with those of the anther, pollen and seed coat. The genus is divided into four sections in the present classification. Dasydesmus Craib, based on a single species. O. bodinieri, is reduced here, and the reasons are given. The genus is distributed mainly in the subtropics, and less frequently in the tropics, of China south of 32.5°N and east of 98.5°E, with only two species beyond the border, O. hirsuta in Thailand (only a single locality in Chiengmai) and O. aurea also found in north Vietnam (see Fig. 1, Table 3). Sect. 1. Stomactin (Clarke) Fritsch. Corolla urceolate-tubular, constricted at the throat, with limb distinctly bilabiate; anthers broad-oblong; seed coat reticulate, smooth, rarely minutely tuberculate; pollen exine fine-reticulate, tectum partial and smooth, luminae slightly unequal in size. Sect. 2. Orthanthera K. Y. Pan Corolla campanulate or campanulate-tubular; anthers broad-oblong; seed coat reticulate, muri smooth, rarely spiny-processed; pollen exine fine-reticulate, with partial and smooth tectum and luminae slightly unequal in size, rarely exine insular and fine-tuberculate, tectum perforate. Setc. 3. Oreocharis Corolla thin-tubular; anthers broad-oblong; seed coat densely spinyprocessed, rarely fine-tuberculate; pollen exine insular, densely spiny-processed, rarely finereticulate and smooth, luminae unequal in size. Sect. 4. Platyanthera K. Y. Pan Corolla campanulate; anthers hippocrepiform; seed coat densely spiny-processed; pollen exine fine-reticulate, tectum perforate, luminae small, nearly equal in size. In the section Stomactin, although the constriction of corolla at its throat is a specialized character, the characters of seed coat, pollen grains and anthers are apparently primitive. Therefore it may be said at least that more primitive characters are preserved in the section. In the section Oreocharis, on the contrary, the characters of corolla, seed coat and pollen exine are all advanced. And in the section Platyanthera, the seed coat, pollen (with perforate tectum) and anthers have developed rather specialized characters.  相似文献   

9.
In addition to describing a new species, Cypripedium wumengense, as well as a new variety, C. bardolphianum var. zhongdianense, nomenclatural and taxonomic notes are made on its allies and the division to which they belong. They are ltrge]y found in the Hengduan Mountains in southwestern China, characterized by the absence of bract, havirg lip more or less covered with small wart-like outgrowths, and that as the capsule matures the scape becomes much elongated. Six species of this group have hitherto been reported, of which, however, C. ebracteatum and C. nutans are regarded here as conspecific with C. fargesii and C. bardolphianum respectively. Thus, including the new taxa described here, it composes five species and one variety: C. bardolphianum W. W. Sm. et Farrer (var. bardolphianum and var. zhongdianense S. C. Chen), C. micranthum Franch., C. fargesii Franch., C. margaritaceum Franch. and C. wumengense S. C. Chen. They are all grouped here into the same section, Sect. Trigonopedium (Franch.) Pfitz., the oldest legitimate name of this group in the rank of section.  相似文献   

10.
This paper deals with the taxonomy and geographic distribution of the genus Chrysosplenium L. in China. Based on the characters and evolution of the seed, capsule, disk, ovary and leaf, the species of this genus can be grouped into 2 subgenera, 5 sections and 16 series. There are 2 subgenera, 5 sections and 11 series in China. They are as follows: I. Subgen. Gamosplenium Maxim. emend. J. T. Pan Leaves alternate. Lectotype: Chrysosplenium carnosum Hook. f. et Thoms. 1. Sect. Alternifolia Franch. emend. J. T. Pan Seeds smooth and glabrous. Type: Chrysosplenium alternifolium L. (1) Ser. Nudicaulia Maxim. emend. J. T. Pan Disk obscure or absent; ovary nearly half-inferior, sometimes mostly inferior; capsule generally subtruncate and emarginate at top and bilobed with equal and horizontally divaricate or suberect lobes; seeds smooth and glabrous. Type: Chrysosplenium nudicaule Maxim. (2) Ser. Alternifolia Maxim. emend. J. T. Pan Disk 8-lobed; ovary nearly half-inferior; capsule generally subtruncate and emarginate at top, and bilobed with equal and horizontally divaricate lobes; seeds smooth and glabrous. Type: Chrysosplenium alternifolia L. 2. Sect. Nephrophylloides Turcz. Seeds minutely papillose or pilose. Type: Chrysosplenium sedakowii Turcz. (1) Ser. Macrophylla Franch. emend. J. T. Pan Disk obscure or absent; ovary nearly half-inferior; capsule nearly truncate and emarginate at top, and bilobed with equal lobes; seeds minutely papillose. Type: Chrysosplenium macrophyllum Oliv. (2) Ser. Ovalifolia Maxim. emend. J. T. Pan Disk generally 8-, rarely 4-, lobed, papillae absent around disk; ovary mostly inferior; capsule subtruncate and emarginate at top; seeds minutely papillose or pilose. Type: Chrysosplenium ovalifolium M. Bieb. ex Bunge (3) Ser. Lanuginosa Hara, emend. J. T. Pan Papillae numerous, brown around reduced disk; ovary mostly inferior; capsule nearly truncate and emarginate at top; seeds minutely papillose. Type: Chrysosplenium lanuginosum Hook. f. et Thoms. II. Subgen. Chrysosplenium Leaves opposite. Type: Chrysosplenium oppositifolium L. 1. Sect. Trichosperma J. T. Pan, sect. nov. Capsule not truncate at top, and bilobed with subequal, suberect or divergent lobes. Type: Chrysosplenium trichospermum Edgew. ex Hook. f. et Thoms. This section is divided into 4 series in the world, with only 1 in China. (1) Ser. Nepalensia Maxim. emend. J. T. Pan Disk obscure or absent; ovary generally mostly inferior; cassule not truncate at top, and bilobed with subequal and suberect or divergent lobes; seeds smooth and glabrous. Type: Chrysosplenium nepalense D. Don 2. Sect. Grayana J. T. Pan, sect. nov. Capsule bilobed with distinctly unequal and ascending lobes. Type: Chrysosplenium grayanum Maxim. This section consists of 4 series in the world, with 3 series in China. (1) Ser. Sinica Maxim. emend. J. T. Pan Disk obscure or absent; ovary nearly half-superior; capsule bilobed with distinctly unequal and ascending lobes; seeds minutely papillose. Type: Chrysosplenium sinicum Maxim. (2) Ser. Esulcata Franch. emend. J. T. Pan Disk (4)-8-lobed; ovary generally half-inferior; capsule bilobed with unequal and ascending lobes; seeds minutely papillose or pilose. Lectotype: Chrysosplenium dubium J. Gayex DC. (3) Ser. pilosa maxim. emend. J. T. Pan Disk obscure or absent; ovary nearly half-inferior; capsule bilobed with distinctly unequal and ascending lobes; seeds distinctly longitudinally ll-18-costate and minutely papillose or tuberculate on the ridge. Type: Chrysosplenium pilosum Maxim. 3. Sect. Chrysosplenium Capsule nearly truncate and emarginate at top, and bilobed with equal and horizontally divaricate lobes. Type: Chrysosplenium oppositifolium L. (1) Ser. Romosa J. T. Pan, ser. nov. Disk distinctly 8-lobed, papillae sparse, brown around disk; ovary mostly inferior; capsule nearly truncate and emarginate at top, and bilobed with equal and horizontally divaricate lobes; seeds smooth and glabrous. Type: Chrysosplenium ramosum Maxim. This series is monospecific one, also occurring in China, namely C. ramosum Maxim. (2) Ser. Delavayi Hara Disk distinctly 8-lobed, Papillae sparse, brown around the disk; ovary mostly inferior; capsule nearly truncate and emarginate at top, and bilobed with equal and horizontally divaricate lobes; seeds distinctly longitudinally 10-16-costate and transversely striate on the ridge. Type: Chrysosplenium delavayi Franch. This series can be considered as the most advanced one in the Chrysaspleninm L. So far, the Chrysosplenium L. comprises 64 species in the world, among which 1 species is found in North Africa, 2 in South America, 4 in Europe, 5 in North America, 56 in Asia, of which 3 occur in Sikkim, 5 Bhutan, 5 Mongolia, 6 north Burma, 6 Korea, 7 north India, 8 Nepal, 12 Japan, 17 U.S.S.R. (of which 3 also in Europe), 34 China (including 22 endemic species and 3 new species). In China, Fujian and Guangdong Provinces and Zhuang Autonomous Region of Guangxi each has only 1 species, Taiwan, Zhejiang, Shanxi and Hebei Provinces and Uygur Autonomous Region of Xinjiang each has 2, Anhui, Jiangxi and Hunan Provinces each has 3, Qinghai Province 4, Heilongjiang, Liaoning and Guizhou Provinces each has 5, Jilin and Hubei Provinces each has 6, Gausu Province 8, Shaanxi Province and Xizang (Tibet) Autonomous Region each has 10, Yunnan Province has 11, Sichuan Province has 14. Thus the distribution centre of this genus should be in the north temperate zone of Asia, and the region covering Shaanxi Gansu, Sichuan, Yunnan and Xizang may be regarded as an important part of this centre. The 7 species of Ser. Nudicaula Maxim. emend. J. T. Pan can be considered as the most primitive ones in this genus. They are mostly distributed in Shaanxi (Qin Ling), south Gansu, southeast Qinghai, southwest Sichuan and nothwest Yunnan of China. This region may be considered as the centre of the origin (or at least differentiation) of this genus. The new species and the new varieties described in this paper are as follows: C. hydrocotylifolium Levl. et Vant. var. emeiense J. T. Pan, C. taibaishanense J. T. Pan, C. lixianense Jien ex J. T. Pan, C. qinlingense Jien ex J. T. Pan.  相似文献   

11.
In this paper the classification of the genus Bergenia Moench is provided, its geographic distribution analysed, and the phylogeny also traced. Based on an analysis of morphological characters such as leaves, ocreas, branches of inflorescences, Pedicels, hypanthium, sepals, and glandular indumentum, thi genus is divided into 3 sections: 1. Sect. Scopulosae J. T. Pan, sect. nov., 2. Sect. Bergnia, 3. Sect. Ciliatae (A. Boriss.) J. T. Pan, stat. nov. The Sect. Scopulosae J. T. Pan may be considered as the primitive one, while Sect. Ciliatae (A. Boriss.) J. T. Pan may be regarded as the advanced one, with Sect. Bergenia in between. So far, the genus Bergenia Moench comprises 9 species in the total. Southeast Asia and North Asia (south and east Siberia, USSR) each have only 1 species, West Asia (Afghanistan) has 2, Central Asia (Kirghizia-Tajikistan-Uzbekstan area, USSR) 3, South Asia 4 (Nepal has 4, India, Pakistan and Kashmir area each has 3, Bhutan and Sikkim each has 2), East Asia 6. In East Asia, Mongolia and Korea each have only 1 species, but China has 6 (including endemic species 2 and new species 1). Sichuan Province and Xizang Autonomous Region each have 3, Yunnan Province 2, Shaanxi Province (Qinling Mountains) and Uygur Autonomous Region of Xinjiang each have only 1. Thus the distribution centre of this genus should be in the region covering Sichuan, Yunnan and Xizang. Moreover, it is noteworthy that Bergenia scopulosa T. P. Wang in Sect. Scopulosae seems to have retained primitive characters, for example, non-ciliate leaves and ocreas, glabrous pedicels, hypanthium and sepals, and this primitive species is found in Qinling Mountains and Sichuan. According to the distribution of the primitive species, the author suggests that the centre of origin of this genus be in the region covering Qinling Mountains and Sichuan.  相似文献   

12.
草苁蓉属(列当科)分类的研究   总被引:1,自引:0,他引:1  
本文详细比较了草苁蓉属和丁座草属(Xylanche)植物的形态特征,并在扫描电镜下观察了它们的种皮纹饰。发现G.Beck(1890)建立丁座草属时所依据的花部性状并不可靠,这些性状,尤其是花萼分裂度和心皮数目,本身就有变异。因此,作者将丁座草属归并入草苁蓉属(Boschniakia)中。  相似文献   

13.
论世界芨芨草属(禾本科)的地理分布   总被引:12,自引:0,他引:12  
本文详细讨论了世界芨芨草属的地理分布等问题。1.全世界芨芨草属共有23种1变种,分为5个组。本文对它们进行了系统介绍。2.属的地理分布,最北为北纬62°(羽茅、毛颖芨芨草),最南为北纬26°(林阴芨芨草)。就海拔而论,分布最低的海拔记录为120m(雀麦芨芨草),分布最高的海拔记录为4600m(干生芨芨草和藏芨芨草)。3.本文讨论了芨芨草属5个组(芨芨草组,钝基草组,直芒草组,新芨芨草组,拟芨芨草组)的系统位置,和每个组包括的种类及5个组的分布格局。4.根据塔赫他间世界植物区系区划,统计了每个区的种数,明显看出伊朗—土兰区种类(18/24)是第一位,东亚区(14/24)居第二位。中国有17种,横断山脉地区、华北地区和唐古特地区种数最丰富(10种和9种)。5.研究结果表明:(A)从种的分布格局分析可见,横断山脉地区北部、唐古特地区东部和华北地区西部的交汇地是芨芨草属分布中心。(B)根据芨芨草属形态特征演化趋势分析和地史学资料推测横断山脉地区北部是芨芨草属的起源地。(C)有三条路线向外散布:a)从横断山脉地区向西沿喜马拉雅山脉,经克什米尔地区抵达地中海和中欧;b)从横断山脉向西北经祁连山、天山、塔里木盆地西侧山地,抵吉尔吉斯斯坦伊塞克湖; c)由横断山脉向东北经甘肃、宁夏、陕西、山西、河北和东北,抵达西伯利亚,东达堪察加半岛,西至鄂毕河上游,并经白令海峡陆桥分布到美国内华达山脉和落基山山脉。(D)该属植物集中分布于北半球半湿润、半干旱和干旱地区,以及极端干旱的荒漠区山地。植物的形成、发展和生态适应与气候相联系,并经过长期的适应和进化,塑造了一系列中生、旱中生的形态-生态特征和生活型。  相似文献   

14.
云南蚤类区系及分布特征   总被引:5,自引:0,他引:5  
【目的】在收集汇总以往野外调查资料以及已经发表的历史文献资料基础上,归纳云南蚤类的分布特点,分析云南地理小区对蚤类的影响。【方法】在实地采集和补充文献记录基础上,对收集到的蚤类进行系统分类整理;运用SPSS13.0的主成分分析及系统聚类对数据进行处理。【结果】本研究共记录云南蚤类9科45属144种,其中古北种15种,东洋种 108种,东洋、古北两界兼有种15种,广布种6种。144种蚤中,属于云南特有蚤类有75种;横断山中部小区记载蚤类122种,横断山南部小区26种,滇东高原小区41种,滇西高原小区28种,滇南山地小区25种。主成分分析和聚类分析结果基本一致,均可聚为两类:一类为横断山南部小区、滇南山地小区、滇西高原小区及滇东高原小区; 另一类为横断山中部小区。【结论】云南省蚤类分布明显受到地理小区环境的影响。云南省蚤类昆虫种类繁多,蚤类的自然分布受到云南省特定地形地貌影响。  相似文献   

15.
国产毛茛科银莲花族十七种植物的细胞学研究   总被引:2,自引:0,他引:2  
研究了国产毛茛科银莲花族Trib.Anemoneae 17种植物的染色体数目和核型。10种银莲花属 Anemone L.植物中,1种(西南银莲花A.davidii)为x=8的四倍体(2n=4x=32),5种(匍枝银莲花A. stolonifera、草玉梅 A.rivularis、卵叶银莲花A .begoniifolia、水棉花A.hupehensis f. alba、大火草A.tomen- tosa)为x=8的二倍体(2n=2x=16),4种(鹅掌草A.flaccida、湿地银莲花A.rupestris、蓝匙叶银莲花 A.trullifolia var.colestina、拟条叶银莲花A.trullifolia var.holophylla、展毛银莲花A.demissa)为x=7的 二倍体(2n=2x=14)。罂粟莲花Anemoclema glaucifolium 为x=8的二倍体。6种铁线莲属Clematis L.植 物(滇川铁线莲C.kockiana、长花铁线莲C.rehderiana、毛茛铁线莲C.ranunculoides、扬子铁线莲C. puberula var.ganpiniana、短尾铁线莲C.brevicaudata、金毛铁线莲A.chrysocoma)均为x=8的二倍体。银 莲花属中x=7的种类的核型彼此十分相似,均由6对大型具中部着丝点的染色体和1对具端部着丝点 的染色体组成;x=8的二倍体种类的核型与罂粟莲花属和铁线莲属植物的核型十分相似,均由5对大型 具中部着丝点和3对具端部或近端部着丝点的染色体组成。  相似文献   

16.
The somatic chromosome number and detailed chromosome morphology have been studied in ten species of Anemone, one species of Anemoclema, and six species of Clematis, all from China, namely Anemone davidii Franch. (2n=4x= 32), A. stolonifera Maxim. (2n=2x=16), A. flaccida Fr. Schmidt (2n=2x= 14), A. rivularis Buch.-Ham. (2n=2x= 16), A. begoniifiolia lévl. et Vant. (2n=2x= 16), A. hupehensis Lem. f. alba W. T. Wang (2n =2x = 16), A. tomentosa (Maxim.) Péi (2n=2x= 16), A. rupestris Hook. f. et Thoms. (2n=2x= 14), A. trullifolia var. colestina (Franch.) Finet et Gagnep. (2n = 2x = 14), A. trullifolia var. holophylla Diels (2n=2x= 14), A. demissa Hook. f. et Thoms. (2n=2x= 14), Anemoclema glaucifolium (Franch.) W. T. Wang (2n= 2x= 16), Clematis kockiana Schneid. (2n= 2x=16), C. rehderiana Craib. (2n = 2x = 16), C. ranunculoides Franch. (2n = 2x = 16), C. puberula var. ganpiniana(Lévl. et Vant. ) W. T. Wang (2n = 2x = 16), C. brevicaudata DC. (2n= 2x= 16), C. chrysocoma Franch. (2n = 2x = 16). The species of x = 8 in Anemone, and those in Anemoclema and Clematis have very similar karyotypes which consist of five pairs of large median-centromeric (rarely one pair of which are submedian-centromeric) and three pairs of subterminalor terminal-centromeric chromosomes.  相似文献   

17.
The genus, Ainsliaea DC. from China is revised in this paper. Three species, A. nana Y. C. Tseng, A. pingbianensis Y. G. Tseng and A. trinervis Y. C. Tseng, are newly described; two species, A. chapaensis Merr. and A. angustifolia Hook. f. et Thoms. ex C. B. Clarke are new records for China and two new combinations, A. apteroides (Chang) Y. C. Tseng and A. macrocephala (Mattf.) Y. C. Tseng, are made. In addition, one species, A. hypoleuca Diels ex Limpr. and four varieties, A. bonatii Beauverd var. arachnoidea Beauverd, A. pteropoda DC. var. leiophylla Franch., A. elegans Hemsl. var. tomentosa Mattf. and A. glabra Hemsl. var. tenuiculis (Mattf.)Chang, are reduced to synonyms.  相似文献   

18.
Paphiopedilum malipoense S. C. Chen et Tsi is a very interesting new species with its flower similar to that of Cypripedium, especially section Cypripedium. It belongs to subgenus Brachypetalum, the most primitive group of Paphiopedilum, but differs from its allied species in hgniva elliptic-lanceolate sepal with cuspidately acuminate apex, rather narrow petals and horizontal lip, which are of common occurrence in many cypripediums, but very rare in paphiopedilums. Apparently, this is an intermediate form, or a link, between Paphiopedilum and Cypripedium, but it does not seem to arise from hybridization between them, because no Cypripedium has been found wherever Paphiopedilum occurs. The new species is distributed in southeastern Yunnan of China. In this area, as well as in river valleys of western Yunnan or the Hengduan Mountains, there have been four species of the same genus reported before. As we know, the Hengduan Mountains and their adjacent areas are rich in Cypripedium. The differentiation of the genus there is remarkable. All five sections it contains occur there and three of them are quite distinctive. For example, the general appearance of the section Bracleosa is dissimilar to that of any other cypripediums, but closely resembles that of Listera. It appears that the difference between sect. Bracteosa of Cypripedium and sect. Brachypetalum of Paphiopedilum is not necessarily wider than that between sect. Bracteosa and sect. Cypripedium of the same genus. Apparently, it is reasonable to consider Paphiopedilum to be an evolutional branch of Cypripedium extending into tropical area, with its primitive group (subgenus Brachypetalum) still remaining in its northern fringe area. This primitive subgenus has eight species, distributed from western Yunnan to the Malay Peninsula. Five of them, including the intermediate and primitive form published here, are found in the hilly land of southeastern Yunnan and the river valleys of western Yunnan. All these facts suggest its area of origin: the river valleys of the Hengduan Mountains and the lower hilly land contiguous to the southof them.  相似文献   

19.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view. The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds. But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa. The seed coat of 18 species and pollen grains of 6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species. The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec tion and the hair type of filaments and plants, are important in distinguishing Chinese species. A key to the species of Orobanche in China is given. This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60 species found in Caucasus and Middle Asia of USSR, where may be the mordern distribu tional centre. Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic relationship between this region and Middle Asia of USSR. 6 species are endemic to China, of which 4 are confined to the Hengduan Mountains (Yangtze-Mekong-Salwin divide). The relationships between this genus and related ones of Orobanchaceae are also discussed. The author holds the following opinions: the genus Phelypaea Desf. should be considered as a member of Orobanche L. Sect. Gymnocaulis G. Beck, the monotypic genus, Necranthus A. Gilli endemic to Turkey, is allied with Orobanche L. Sect. Orobanche, the monotypic genus, Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and should be regarded as a separate genus. The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae, and 15 morphological characters were used in the numerical taxonomic treatment to test the above-mentioned suggestions. After standardization of characters, the correlation matrices were computerized. The correlation matrices were made to test the various clustering methods. At last the UPGMA clustering method was chosen and its result is shown in a phenogram. The result of numerical analysis is basically in accordance with the suggestions.  相似文献   

20.
中国柳属的数量分类研究(一)   总被引:1,自引:1,他引:0  
柳属(Salix L.)由于雌雄异株、风媒花等复杂多变的形态特征,研究的难度为植物分类工作者所熟知。六十年代,用刚刚定型的数量分类学作为工具[22],对柳属进行定量研究,Crovello的系列工作,[6-12,19],引起我们的注视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号