首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing human pressure on the environment in the isolated Macaronesian island group of Cape Verde is threatening many endemic species with extinction. The status of Phoenix atlantica, the Cape Verde Island date palm, is one of the unresolved taxonomic issues not only of the archipelago’s flora but also in the genus Phoenix. We applied 15 nuclear microsatellite markers and one chloroplast minisatellite marker to individuals of Phoenix from the Cape Verde Islands, P. dactylifera, P. canariensis and P. sylvestris, in order to assess the taxonomic position of P. atlantica within the genus. Our analysis showed that P. atlantica is clearly distinct from its close relatives and that its closest relative is likely to be its nearest geographical neighbour, P. dactylifera. Comparable levels of genetic diversity were found in insular P. atlantica and continental P. dactylifera despite the large difference in geographic range size. Our findings highlight the importance of conserving the relatively fragmented and isolated populations of P. atlantica as one of only␣two endemic trees on the islands and emphasise the need for further studies into its evolution and relationship with P. dactylifera.  相似文献   

2.
The genus Phoenix (Arecaceae) comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG (GCC)-trnfM (CAU) spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp) comprising the mentioned minisatellite, and located between the psbZ and trnfM (CAU) genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis,were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013). For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM (CAU) region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.  相似文献   

3.
There are three species of Phoenix (Arecaceae) in the territory of the European Union, P. canariensis, P. dactylifera and P. theophrasti, found in wild-native populations, feral, planted and intermediate states, accounting each for thousands of individuals. The EU Habitats Directive has addressed the conservation of P. theophrasti and P. canariensis under the habitat type 9370, ‘Palm groves of Phoenix,’ but neglected to include the wild-growing populations of P. dactylifera palms in southern Spain. In this paper, we survey the habitats and status of both representative native and naturalized populations of Phoenix, in total 103, through fieldwork, image analysis and review of literature. We underline the significance of feral populations and palms originating from ancient abandoned plantations, existing in protected areas as a reservoir of genetic variation. We conclude that, in order to improve their conservation status by adequate protection and conservation management, the concept of Phoenix palm groves in the Habitats Directive should be redefined to include the western group of P. dactylifera and the various habitats of P. canariensis and P. theophrasti that do not appear in the current definition.  相似文献   

4.
The genetic diversity of small populations is greatly influenced by local dispersal patterns and genetic connectivity among populations, with pollen dispersal being the major component of gene flow in many plants species. Patterns of pollen dispersal, mating system parameters and spatial genetic structure were investigated in a small isolated population of the emblematic palm Phoenix canariensis in Gran Canaria island (Canary Islands). All adult palms present in the study population (n=182), as well as 616 seeds collected from 22 female palms, were mapped and genotyped at 8 microsatellite loci. Mating system analysis revealed an average of 5.8 effective pollen donors (Nep) per female. There was strong variation in correlated paternity rates across maternal progenies (ranging from null to 0.9) that could not be explained by the location and density of local males around focal females. Paternity analysis revealed a mean effective pollen dispersal distance of ∼71 m, with ∼70% of effective pollen originating from a distance of <75 m, and 90% from <200 m. A spatially explicit mating model indicated a leptokurtic pollen dispersal kernel, significant pollen immigration (12%) from external palm groves and a directional pollen dispersal pattern that seems consistent with local altitudinal air movement. No evidence of inbreeding or genetic diversity erosion was found, but spatial genetic structure was detected in the small palm population. Overall, the results suggest substantial pollen dispersal over the studied population, genetic connectivity among different palm groves and some resilience to neutral genetic erosion and subsequently to fragmentation.  相似文献   

5.
6.
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing.  相似文献   

7.
Peroxidase from date palm (Phoenix dactylifera L.) leaves was purified to homogeneity and characterized biochemically. The enzyme purification included homogenization, extraction of pigments followed by consecutive chromatographies on DEAE-Sepharose and Superdex 200. The purification factor for purified date palm peroxidase was 17 with 5.8% yield. The purity was checked by SDS and native PAGE, which showed a single prominent band. The molecular weight of the enzyme was approximately 55 kDa as estimated by SDS–PAGE. The enzyme was characterized for thermal and pH stability, and kinetic parameters were determined using guaiacol as substrate. The optimum activity was between pH 5–6. The enzyme showed maximum activity at 55 °C and was fairly stable up to 75 °C, with 42% loss of activity. Date palm leaves peroxidase showed Km values of 0.77 and 0.045 mM for guaiacol and H2O2, respectively. These properties suggest that this enzyme could be a promising tool for applications in different analytical determinations as well as for treatment of industrial effluents at low cost.  相似文献   

8.
The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [∼80.6% (A + T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12 kb, with 50% of the reads between 15.5 and 50 kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo and successfully compiled all 14 nuclear chromosomes telomere-to-telomere. We also accurately resolved centromeres [∼90–99% (A + T)] and subtelomeric regions and identified large insertions and duplications that add extra var and rifin genes to the genome, along with smaller structural variants such as homopolymer tract expansions. Overall, we show that amplification-free, long-read sequencing combined with de novo assembly overcomes major challenges inherent to studying the P. falciparum genome. Indeed, this technology may not only identify the polymorphic and repetitive subtelomeric sequences of parasite populations from endemic areas but may also evaluate structural variation linked to virulence, drug resistance and disease transmission.  相似文献   

9.
Date palm (Phoenix dactylifera L.) is an economically important and widely cultivated palm of the family Arecaceae. We sequenced the complete date palm chloroplast genome (cpDNA) from Pakistani cv. ??Aseel??, using a combination of Sanger-based and next-generation sequencing technologies. Being very similar to a sequence from a Saudi Arabian date palm cultivar ??Khalas?? published recently, the size of the genome was 158,458?bp with a pair of inverted repeat (IR) regions of 27,276?bp that were separated by a large single-copy (LSC) region of 86,195?bp and a small single-copy (SSC) region of 17,711?bp. Genome annotation demonstrated a total of 138 genes, of which 89 were protein coding, 39 were tRNA, and eight were rRNA genes. Comparison of cpDNA sequences of cultivars ??Aseel?? and ??Khalas?? showed following intervarietal variations in the LSC region; (a) two SNPs in intergenic spacers and one SNP in the rpoc1 gene, (b) polymorphism in two mono-nucleotide simple sequence repeats (SSR), and (c) a 4-bp indel in the accD-psaI intergenic spacer. The SSC region has a polymorphic site in the mono-nucleotide SSR located at position 120,710. We also compared cv. ??Aseel?? cpDNA sequence with partial P. dactylifera cpDNA sequence entries deposited in Genbank and identified a number of potentially useful polymorphisms in this species. Analysis of date palm cpDNA sequences revealed a close relationship with Typha latifolia. Occurrence of small numbers of forward and inverted repeats in date palm cpDNA indicated conserved genome arrangement.  相似文献   

10.
Aim The main purpose of this work is to understand the origin, history, historical biogeography and mechanisms of date palm (Phoenix dactylifera L.) domestication. Location Seeds of uncultivated Phoenix individuals from isolated Oman populations, cultivated date palm varieties of various geographical origins and other related Phoenix species were analysed. Additionally, well‐preserved seeds from Egyptian archaeological sites (14th century bc to 8th century ad ) were compared with the morphometric reference model based on the analysis of modern material. Methods Elliptic Fourier transforms (EFT), a morphometric method applied to shape outline analysis, were used to characterize seed shape and to quantify morphological diversity in P. dactylifera and related species. Results Analysis of seed outlines by EFT (1) showed that P. dactylifera can be differentiated from other Phoenix species and (2) enabled the quantification of patterns of shape differentiation in the genus Phoenix at different taxonomic, geographical and chronological levels. Date palm agrobiodiversity, partitioned in distinct morphotypes, appeared to be complex in terms of geographical structure. Allocation of archaeological seeds to different modern Phoenix forms and date palm morphotypes allowed us to reveal ancient forms consumed and/or exploited in Egypt and finally to determine spatial and temporal changes in agrobiodiversity. Main conclusions Based on the morphological diversity quantified in P. dactylifera and related species, we characterized ancestral seed shape features present in uncultivated populations. The geographical distribution pattern of seed shapes points to human dispersal routes that spread cultivation from one or more initial ‘domestication centres’. Finally, this work provides a powerful tool to identify ancient forms as demonstrated by the analysis of well‐preserved Egyptian archaeological seeds, dating from the 14th century bc to the 8th century ad . Results open new and fascinating perspectives on the investigation of the origins and chrono‐geographical fluctuation of date palm agrobiodiversity.  相似文献   

11.
The Hui people are unique among Chinese ethnic minorities in that they speak the same language as Han Chinese (HAN) but practice Islam. However, as the second-largest minority group in China numbering well over 10 million, the Huis are under-represented in both global and regional genomic studies. Here, we present the first whole-genome sequencing effort of 234 Hui individuals (NXH) aged over 60 who have been living in Ningxia, where the Huis are mostly concentrated. NXH are genetically more similar to East Asian than to any other global populations. In particular, the genetic differentiation between NXH and HAN (FST = 0.0015) is only slightly larger than that between northern and southern HAN (FST = 0.0010), largely attributed to the western ancestry in NXH (∼10%). Highly differentiated functional variants between NXH and HAN were identified in genes associated with skin pigmentation (e.g., SLC24A5), facial morphology (e.g., EDAR), and lipid metabolism (e.g., ABCG8). The Huis are also distinct from other Muslim groups such as the Uyghurs (FST = 0.0187), especially, NXH derived much less western ancestry (∼10%) compared with the Uyghurs (∼50%). Modeling admixture history indicated that NXH experienced an episode of two-wave admixture. An ancient admixture occurred ∼1,025 years ago, reflecting the intensive west–east contacts during the late Tang Dynasty, and the Five Dynasties and Ten Kingdoms period. A recent admixture occurred ∼500 years ago, corresponding to the Ming Dynasty. Notably, we identified considerable sex-biased admixture, that is, excess of western males and eastern females contributing to the NXH gene pool. The origins and the genomic diversity of the Hui people imply the complex history of contacts between western and eastern Eurasians.  相似文献   

12.
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs.  相似文献   

13.
During spring and summer of 2011, a survey was undertaken on some palm groves in the Kerman province (south‐eastern Iran) to determine the fungal pathogens associated with date palm (Phoenix dactylifera L.) decline diseases. Samples were taken from date palm trees showing yellowing, wilting and dieback symptoms. Isolations were made from symptomatic tissues on malt extract agar (MEA) supplemented with 100 mg/l streptomycin sulphate (MEAS). Two species of Phaeoacremonium, Phaeoacremonium aleophilum and Pm. parasiticum, and two species of Botryosphaeriaceae, Botryosphaeria dothidea andDiplodia mutila, were isolated from affected trees and identified on the basis of morphological, cultural and molecular characteristics. Pathogenicity tests were performed on date palm (4‐year‐old potted plants) under greenhouse conditions. Based on the pathogenicity tests, Pm. aleophilum was the most virulent and caused the longest lesions. This is the first report of Pm. aleophilum and B. dothidea and their pathogenicity on date palm tree.  相似文献   

14.
The date palm, Phoenix dactylifera, is a vital crop in nations in the Middle East and North Africa. The date palm was thought to have outstanding traditional medicinal value because it was abundant in phytochemicals with diverse chemical structures. The date palm's ability to withstand harsh environments could be partly attributed to a class of proteins known as lectins, which are carbohydrate-binding proteins that can bind sugar moieties reversibly and without changing their chemical structures. After scanning the genome of P. dactylifera (GCF 009389715.1), this in silico study discovered 196 possible lectin homologs from 11 different families, some specific to plants. At the same time, others could also be found in other kingdoms of life. Their domain architectures and functional amino acid residues were investigated, and they yielded a 40% true-lectin with known conserved carbohydrate-binding residues. Further, their probable subcellular localization, physiochemical and phylogenetic analyses were also performed. Scanning all putative lectin homologs against the anticancer peptide (ACP) dataset found in the AntiCP2.0 webpage identified 26 genes with protein kinase receptors (Lec-KRs) belonging to 5 lectin families, which are reported to have at least one ACP motif. Our study offers the first account of Phoenix-lectins and their organization that can be used for further structural and functional analysis and investigating their potential as anticancer proteins.  相似文献   

15.
16.
17.
Geophysical evidence strongly supports the complete isolation of India and Madagascar (Indo-Madagascar) by 100 million years ago, though sparse terrestrial fossil records from these regions prior to 70 million years ago have limited insights into their biogeographic history during the Cretaceous. A new theropod dinosaur, Dahalokely tokana, from Turonian-aged (90 million years old) strata of northernmost Madagascar is represented by a partial axial column. Autapomorphies include a prominently convex prezygoepipophyseal lamina on cervical vertebrae and a divided infraprezygapophyseal fossa through the mid-dorsal region, among others. Phylogenetic analysis definitively recovers the species as an abelisauroid theropod and weakly as a noasaurid. Dahalokely is the only known dinosaur from the interval during which Indo-Madagascar likely existed as a distinct landmass, but more complete material is needed to evaluate whether or not it is more closely related to later abelisauroids of Indo-Madagascar or those known elsewhere in Gondwana.  相似文献   

18.

Background

In the present study, we examined the inhibitory effects of a methanolic extract, dichloromethane fraction, water layer, and polyhydroxylated sterols (1–4) isolated from the Vietnamese starfish Protoreaster nodosus on pro-inflammatory cytokine (IL-12 p40, IL-6, and TNF-α) production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) using enzyme-linked immunosorbent assays (ELISA).

Results

The methanolic extract and dichloromethane fraction exerted potent inhibitory effects on the production of all three pro-inflammatory cytokines, with IC50 values ranging from 0.60 ± 0.01 to 26.19 ± 0.64 μg/mL. Four highly pure steroid derivatives (1–4) were isolated from the dichloromethane fraction and water layer of P. nodosus. Potent inhibitory activities were also observed for (25S) 5α-cholestane-3β,4β,6α,7α,8β,15α,16β,26-octol (3) on the production of IL-12 p40 and IL-6 (IC50s = 3.11 ± 0.08 and 1.35 ± 0.03 μM), and for (25S) 5α-cholestane-3β,6α,8β,15α,16β,26-hexol (1) and (25S) 5α-cholestane-3β,6α,7α,8β,15α,16β,26-heptol (2) on the production of IL-12 p40 (IC50s = 0.01 ± 0.00 and 1.02 ± 0.01 μM). Moreover, nodososide (4) exhibited moderate inhibitory effects on IL-12 p40 and IL-6 production.

Conclusion

This is the first report of the anti-inflammatory activity from the starfish P. nodosus. The main finding of this study is the identification oxygenated steroid derivatives from P. nodosus with potent anti-inflammatory activities that may be developed as therapeutic agents for inflammatory diseases.  相似文献   

19.
The saber-toothed cat, Smilodon fatalis, and American lion, Panthera atrox, were among the largest terrestrial carnivores that lived during the Pleistocene, going extinct along with other megafauna ∼12,000 years ago. Previous work suggests that times were difficult at La Brea (California) during the late Pleistocene, as nearly all carnivores have greater incidences of tooth breakage (used to infer greater carcass utilization) compared to today. As Dental Microwear Texture Analysis (DMTA) can differentiate between levels of bone consumption in extant carnivores, we use DMTA to clarify the dietary niches of extinct carnivorans from La Brea. Specifically, we test the hypothesis that times were tough at La Brea with carnivorous taxa utilizing more of the carcasses. Our results show no evidence of bone crushing by P. atrox, with DMTA attributes most similar to the extant cheetah, Acinonyx jubatus, which actively avoids bone. In contrast, S. fatalis has DMTA attributes most similar to the African lion Panthera leo, implying that S. fatalis did not avoid bone to the extent previously suggested by SEM microwear data. DMTA characters most indicative of bone consumption (i.e., complexity and textural fill volume) suggest that carcass utilization by the extinct carnivorans was not necessarily more complete during the Pleistocene at La Brea; thus, times may not have been “tougher” than the present. Additionally, minor to no significant differences in DMTA attributes from older (∼30–35 Ka) to younger (∼11.5 Ka) deposits offer little evidence that declining prey resources were a primary cause of extinction for these large cats.  相似文献   

20.
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska''s interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号