首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers.  相似文献   

2.
Hibiscus rosa-sinensis L. flowers (cv La France) senesce and die over a 12-h period after opening. The aim of this study was to examine the physiological mechanisms regulating the senescence process of ephemeral hibiscus flowers. Different flower stages and floral organs were used to determine whether any interaction existed during flower senescence between endogenous abscisic acid (ABA) and the predisposition of the tissue to ethylene synthesis. This was carried out on whole flowers treated with promoters and inhibitors of ethylene and ABA synthesis or a combination of them. Treatments with 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene biosynthesis, enhanced flower senescence, whereas amino-oxyacetic acid (AOA) and fluridone, an ethylene and an ABA inhibitor, respectively, extended flower longevity. These effects were more significant when applied before anthesis. Ethylene evolution was substantially reduced in all organs from open and senescent flowers treated with fluridone and AOA. Similarly, endogenous ABA accumulation was negatively affected by AOA and fluridone treatments. Application of fluridone plus ACC reduced ethylene evolution and increased ABA content in a tissue-specific manner but did not overcome the inhibitor effect on flower longevity. AOA plus fluridone treatment slightly accelerated flower longevity compared to AOA-treated flowers. Application of ABA alone promoted senescence, suppressed ethylene production, and, when applied with fluridone, countered the fluridone-induced increase in flower longevity. Taken together, these results suggest that the senescence of hibiscus flowers is an endogenously regulated ethylene- and ABA-dependent process.  相似文献   

3.
4.
The phenological stages in seabuckthorn (Hippophae rhamnoides L. Subsp. sinensis Rousi and H. thibetana Schlechted) distributed naturally over an area of Wushao ridge were observed. The changes in levels of endogenous phytohormones GA3, iPA, zeatin, IAA and ABA were investigated systematically during development and ripening periods in the two sorts of fruits. The results showed that two peak values of GA3 level in seeds were detected (in 105—109 days and 128--132 days after anthesis). The first peak value of isopentenyl adenine (IPA) in seeds was determined in 92--96 days when the fruit was starting to change its colour and just right now the zeatin first appeared. The iPA content reached the second peak value in 127-136 days after anthesis during fruit full ripening and beginning to deciduous leaf and the maximum of zeatin in seeds appeared near the same time (in 127 days after anthesis). It was remarkable that the zeatin content in fruit stalk and flesh still was kept on high level, in the meantime the zeatin level in seeds dropped down rapidly. Based on the facts that the time of the first peak value in GA3 and iPA level is close to the date when ABA is first detected, and the date of second peak value in GA3, iPA and IAA is coincident with the time of maximum in ABA and zeatin levels make it reasonable to consider that the balance of phytohormones may be more important than absolute amounts of any single hormone during the periods of fruit development and ripening, and meanwhile it also proved that GA3 and CTK play an important regulatory role in controlling fruit ripening and colour changing process of seabuckthorn fruit.  相似文献   

5.
活性氧(ROS)和植物激素是植物衰老过程中重要的内在或者外在的调控因子。我们发现,相对于离体诱导的衰老过程,在脱落酸(ABA)和乙烯(ethylene)促进的衰老过程中有较多的活性氧积累;在对拟南芥磷脂酶Dδ(PLDδ)缺失型突变体的研究中发现,与野生型相比,突变体在衰老过程中产生较少的活性氧。我们比较了上述两种基因型的离体叶片在离体、ABA和ethylene三种衰老处理下内源的ABA、茉莉酸甲酯(MeJA)、玉米素核苷(Zeatin Riboside, ZR)和吲哚乙酸(IAA)的含量变化,发现每一种激素对上述三种衰老处理的响应模式都很相似。在离体诱导的衰老中,两种基因型拟南芥的内源激素含量没有差异;而在ABA促进的衰老过程中,PLDδ缺失型突变体叶片中的MeJA的含量较低,ZR和IAA含量较高;在乙烯促进的衰老过程中,突变体中的ABA和MeJA的含量较低,ZR和IAA含量较高。上述内源激素的这种变化可能有助于延缓突变体的衰老。  相似文献   

6.
采后衰老进程在很大程度上受到内源和外源激素的影响。抑制拟南芥中磷脂酶Dα1(phospholipaseDtxl,PLDod)的表达后,使得外源脱落酸(abscisic acid,ABA)和乙烯加速的离体叶片衰老过程在一定程度上得到了缓解。然而,内源激素在这个过程中的作用尚不清楚。本研究对比分析了野生型和PLDα1缺失型两种基因型拟南芥叶片在3种不同人工老化过程中(离体诱导的、外源ABA和乙烯促进的衰老过程),内源ABA,茉莉酸甲酯(methyl jasmonate,MeJA)、吲哚乙酸(indole-3-acetic acid,IAA)、玉米素核苷(zeatin riboside,ZR)和赤霉素(gibberellic acid,GA,)的含量变化。这5种激素对3种不同衰老处理方式的响应模式表明了人工老化过程存在着两个不同阶段,并且在衰老早期每种激素的变化模式相同。PLDα1功能缺失使得激素加速的衰老过程得以延缓,这与内源ABA、MeJA、ZR和IAA的含量变化有关。而与GA、的含量变化无关。同时,ZR和IAA的变化模式也说明了这两种激素的变化可能是缺失PLDα1延缓激素加速的衰老过程这一事件的原因而非结果。  相似文献   

7.
采后衰老进程在很大程度上受到内源和外源激素的影响。抑制拟南芥中磷脂酶Dα1 (phospholipase Dα1, PLDα1)的表达后,使得外源脱落酸(abscisic acid,ABA)和乙烯加速的离体叶片衰老过程在一定程度上得到了缓解。然而,内源激素在这个过程中的作用尚不清楚。本研究对比分析了野生型和PLDα1缺失型两种基因型拟南芥叶片在3种不同人工老化过程中(离体诱导的、外源ABA和乙烯促进的衰老过程),内源ABA,茉莉酸甲酯(methyl jasmonate,MeJA)、 吲哚乙酸(indole 3 acetic acid,IAA)、玉米素核苷(zeatin riboside,ZR)和赤霉素(gibberellic acid,GA3)的含量变化。这5种激素对3种不同衰老处理方式的响应模式表明了人工老化过程存在着两个不同阶段,并且在衰老早期每种激素的变化模式相同。PLDα1功能缺失使得激素加速的衰老过程得以延缓,这与内源ABA、MeJA、ZR和IAA的含量变化有关,而与GA3的含量变化无关。同时,ZR和IAA的变化模式也说明了这两种激素的变化可能是缺失PLDα1延缓激素加速的衰老过程这一事件的原因而非结果。  相似文献   

8.
A comparative study of the level of abscisic acid (ABA) and cytokinin and of ethylene production by rose (Rosa sp.) petals of the short-lived cultivar Golden Wave (Dr. Verhage) and the long-lived cultivar Lovita was conducted. In both cultivars, the level of ABA increased as the flowers aged; it was higher in Golden Wave in all developmental stages tested. Ethylene production by cut flowers of the two cuitivars remained low for a short time concomitant with development and then increased sharply. The rise in ethylene production occurred after 3 and 4 days in Golden Wave and Lovita, respectively. Cytokinin level increased as the flower started to open and then decreased to a low level. The significance of these changes in relation to maturation and senescence of rose petals is discussed.  相似文献   

9.
10.
Possible involvement of abscisic acid in senescence of daylily petals   总被引:7,自引:2,他引:5  
Daylily flowers (Hemerocallis hybrid, cv. Stella d'Oro) senesce and die autonomously over a 24 h period after opening. Investigations were performed to determine some of the mechanisms that lead to death of the petals. The flowers are insensitive to ethylene, but exogenous ABA prematurely upregulates events that occur during natural senescence, such as loss or differential membrane permeability, increases in lipid peroxidation and the induction of proteinase and RNase activities. Furthermore, the same patterns of proteinase and RNase activities appearing on activity gels during natural senescence are induced prematurely by ABA. The mRNA profile from ABA-treated, prematurely senescing petals visualized by differential display shows a high degree of similarity to the mRNA profile of naturally senescing petals 18 h later. In addition, endogenous ABA increases before flower opening and continues to increase during petal senescence. An osmotic stress by sorbitol increases endogenous levels of ABA and upregulates the same parameters of senescence as those occurring during natural senescence and after application of ABA. The mRNA profile from sorbitol-treated, prematurely senescing petals, but somewhat less similarity to mRNA from ABA-treated petals. The possibility is discussed that ABA is a constituent of the signal transduction chain leading to programmed cell death of daylily petals.  相似文献   

11.
Gladiolus flowers are ethylene insensitive and the signals that start catabolic changes during senescence of gladiolus flower are largely not known. Therefore, experiments were performed to understand the role of abscisic acid (ABA) in ethylene insensitive floral senescence in gladiolus (Gladiolus grandiflora Hort.). It was observed that ABA accumulation increased in attached petals of gladiolus flowers as they senesced. Exogenous application of ABA in vase solution accelerated senescence process in the flowers due to change in various senescence indicators such as enhanced membrane leakage, reduced water uptake, reduced fresh weight and ultimately vase life. Enhancement of in vivo ABA level in petals by creating osmotic stress also upregulates the same parameters of flower senescence as those occurring during natural senescence and also akin to exogenous application of ABA. Attempts to increase vase life of flowers by application of putative ABA biosynthesis inhibitor fluridone in vase solution to counteract ABA effect were unsuccessful. In contrast, ABA action was mitigated by application of GA3 in holding solution along with ABA which is basically an antagonist of ABA action. The present study provides valuable insights into the role of ABA as a hormonal trigger in ethylene insensitive senescence process and therefore would be helpful for dissecting the complex mechanism underlying ABA-regulated senescence process in gladiolus.  相似文献   

12.
Two petunia ( Petunia hybrida L.) lines, differing in their flower longevity, were studied, Similar tendencies were found in the changes of corolla fresh weight, electrolyte leakage and membrane microviscosity over the life spans of the two lines. Ethylene production by flowers of the two lines showed a similar pattern, peaking at 3 nl flower−1 h−1. However, in flowers of the short-lived line, ethylene production peaked at 6 days of age, but in the long-lived line, the peak appeared at 10 days of age. A large difference was found in the responsiveness of the flower to ethylene, Flowers of the short-lived line responded to a similar ethylene by immediate wilting, while those of the long-lived line responded to a similar ethylene treatment only after two days. Differences in sensitivity to ethylene were also, observed when the flowers were treated continuosly with (aminooxy)acetic acid, which blocks ethylene synthesis. Flowers of both lines responded to ethylene treatment by increased ethylene production to a similar rate. Differential sensitivity to ethylene, independent of ethylene production, seemingly governs flower longevity in the two petunia lines studied.  相似文献   

13.
The present work was focused on abscisic acid (ABA) changes in three differently coloured petunias during flower development and senescence. The ABA content was studied in correlation with changes of flower pigments and other phytohormones. The variations of anthocyanins and endogenous hormones were induced by treatments with 1 or 2 mM amino-oxyacetic acid (AOA), 50, 100 μM thidiazuron (TDZ) and 50 μM 6-benzyladenine (BA). ABA content decreased during bud development and increased during senescence. The AOA reduced the anthocyanins content and avoided ABA increase, while the cytokinins (BA and TDZ) did not significantly affected anthocyanin contents but increased ABA content. TDZ doubled the ABA content compared to the control. However, the treatments did not affected flower life, confirming the secondary role of ABA during flower senescence.  相似文献   

14.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

15.
Cocoa flowers have a limited period of longevity; more than 90% of unpollinated flowers abscised within 32 h after anthesis. Abscisic acid (ABA) levels increased significantly prior to abscission. By 21 h after anthesis, ABA levels had increased almost 10-fold, and by 32 h flowers had 20-fold higher levels of ABA than at anthesis. Fluridone completely inhibited both the increase in ABA, the formation of an abscission zone, and the abscission and senescence of flowers. In contrast, ethylene production increased only slightly 21 h after anthesis and was only 2-fold higher after 32 h. Aminoethoxyvinylglycine (AVG) delayed but did not prevent abscission. In cocoa flowers, ABA is the primary regulator of abscission; ethylene accelerates abscission but only in the presence of ABA. Naphthalene acetic acid (NAA) treatment of flowers at anthesis prevented abscission zone formation and flower abscission, but did not induce fruit set. All parts of the NAA-treated flower except the pedicel senesced after 6 days. NAA+AVG treatment only delayed, whereas fluridone treatment completely prevented flower senescence.  相似文献   

16.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

17.
18.
Changes in water status, membrane permeability, ethylene production and levels of abscisic acid (ABA) were measured during senescence of cut carnation flowers ( Dianthus caryophyllus L. cv. White Sim) in order to clarify the temporal sequence of physiological events during this post-harvest period. Ethylene production and ABA content of the petal tissue rose essentially in parallel during natural senescence and after treatment of young flowers with exogenous ethylene, indicating that their syntheses are not widely separated in time. However, solute leakage, reflecting membrane deterioration, was apparent well before the natural rise in ethylene and ABA had begun. In addition, there were marked changes in water status of the tissue, including losses in water potential (ψw), and turgor (ψp), that preceded the rise in ABA and ethylene. As senescence progressed, ψw continued to decline, but ψp returned to normal levels. These temporal relationships were less well resolved when senescence of young flowers was induced by treatment with ethylene, presumably because the time-scale had been shortened. Thus changes in membrane permeability and an associated water stress in petal tissue appear to be earlier symptoms of flower senescence than the rises in ABA or ethylene. These observations support the contention that the climacteric-like rise in ethylene production is not the initial or primary event of senescence and that the rise in ABA titre may simply be a response to changes in water status.  相似文献   

19.
Development of vitrification and apical necrosis was followed in Camellia sinensis, Gerbera jamesonii, Malus domestica and hybrid Populus tremula x P. alba shoots cultured in vitro on Murashige & Skoog (MS) medium with different concentrations of growth regulators. High humidity in the culture vessels and excess of BA in the medium were found to be the major factors influencing vitrification. Lack of exogenous cytokinin in the medium during successive subcultures induced apical necrosis in poor-rooting species (Malus domestica, Camellia sinensis). The level of internal phytohormones (ABA, IAA, IPA, 2iP, Z, ZR) was determined in the apple shoots by means of ELISA. The content of internal cytokinins in the vitrified apple shoots was several times greater than in normal ones, which supports the hypothesis that excess of cytokinins, inducing rapid divisions of cells in meristems in the atmosphere with high humidity, is responsible for vitrification. Apical necrosis of the plantlets that appeared after cultivation on cytokinin-free medium is the result of deficiency in endogenous hormones in apple shoots and this being confirmed by analysis of endogenous hormones in apple shoots.Abbreviations BA benzyladenine - BHT butylated hydroxy-toluene - ABA abscisic acid - IAA indole-3-acetic acid - ELISA enzyme-linked immunosorbent assay - IPA isopentenyladenosine - 2iP isopentenyladenine - NAA naphthyl-3-acetic acid - TBS trishydroxymethylaminomethane buffered saline - TLC thin layer chromatography - Z zeatin - ZR zeatin riboside  相似文献   

20.
Cytokinin activity in rose petals and its relation to senescence   总被引:3,自引:6,他引:3       下载免费PDF全文
Cytokinin activity in young rose petals was higher than in old ones. The content of endogenous cytokinins in petals of a short-lived variety (Golden Wave) was lower than in a long-lived variety (Lovita). Application of the cytokinin, N6-benzyladenine, increased longevity of the short-lived variety. This strengthens the view that cytokinins participate in the endogenous regulation of senescence in rose petals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号