首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to increase the efficiency, accuracy, fidelity and reliability of in situ hybridization to identify the alien chromosomes and chromosome fragments in triticeae, major steps including probe labelling, chromosome denaturation, DNA concentration for blocking and post-hybridization washing in in situ hybridization were optimized. The results are as fel-lows. (1) The cloned repetitive DNA sequence could be biotin labelled more efficiently by nick translation than by random oligonucleotide labelling method: whereas the random oligonucleotide labelling is more suitable for genomic DNA probe and the labelling efficiency could be increased by prolonging the labelling time appropriately. (2) Denaturation of the biotinylated probe and chromosomes together in oven at 75 ℃ showed the satisfactory results of in situ hybridization, but the contour of treated rye chromosomes often became blurred when the temperature of denaturation was higher than 85℃. When 70% formamide (in 2 × SSC) was used to denature the chromosome DNA, rye chromosomes often swelled although the biotinylated signals could be detected. (3) The unlabeled DNA concentrations for blocking were tested in genomic in situ hybridization to detect the Haynaldia villosa chromosomes with biotin labelled H. villosa genomic DNA as probe. The best contrast between H. villosa and wheat chromosomes was obtained without using the blocking DNA (unlabeled wheat genomic DNA). (4) Post-hybridization washes were carried out in 50% formamide (in 2 × SSC) or in 2 × SSC at different temperature. When the post-hybridization washing temperature were increased gradually from room temperature to 42℃ in 50% formamide (in 2 × SSC). specific in situ hybridization signals on chromosome in triticeae were observed using both biotinylated repetitive DNA and genomic DNA as probe. With the improved resolution of this protocol, in situ hybridization would be widely applied to wheat breeding and genetics researches.  相似文献   

2.
Newly synthesized wheat-rye allopolyploids, derived from Triticum aestivum Mianyang11 × S. cereale Kustro, were investigated by sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) using rye tandem repeat pSc200 and rye genomic DNA as probes, respectively, over the first, second and third allopolyploid generations. FISH signals of pSc200 could be observed at both telomeres/subtelomeres of all 14 chromosomes of the parental rye. In the first allopolyploid generation, there were ten rye chromosomes bearing FISH signals at both telomeres/subtelomeres and four rye chromosomes bearing FISH signals at only one telomere/subtelomere. However, in the second and the third allopolyploid generations, there were 12 rye chromosomes bearing FISH signals at both telomeres/subtelomeres and 2 rye chromosomes bearing FISH signals at only one telomere/subtelomere. Rye telomeric segments were transferred to the centromeric region of wheat chromosomes in some cells and small segments derived from non-telomeric regions of rye chromosome were transferred to the telomeric region of wheat chromosomes in some other cells. These observations indicated that the rye telomeric/subtelomeric region was unstable in newly synthesized wheat-rye allopolyploids and allopolyploidization was accompanied by rapid inter/intra-genomic exchange. The inter-genomic exchange may have occurred in somatic cells.  相似文献   

3.
A high-density BAC filter of Triticum monococcum was screened for the presence of a centromeric retrotransposon using the integrase region as a probe. Southern hybridization to the BAC digests using total genomic DNA probes of Triticum monococcum, Triticum aestivum, and Hordeum vulgare detected differentially hybridizing restriction fragments between wheat and barley. The fragments that hybridized to genomic DNA of wheat but not to that of barley were subcloned. Fluorescence in situ hybridization (FISH) analysis indicated that the clone pHind258 hybridized strongly to centromeric regions in wheat and rye and weakly to those in barley. The sequence of pHind258 was homologous to integrase and long terminal repeats of centromeric Ty3-gypsy retrotransposons of cereal species. Additionally, pHind258 has a pair of 192-bp direct repeats. FISH analysis indicated that the 192-bp repeat probe hybridized to centromeres of wheat and rye but not to those of barley. We found differential FISH signal intensities among wheat chromosomes using the 192-bp probe. In general, the A-genome chromosomes possess strong FISH signals, the B-genome chromosomes possess moderate signals, and the D-genome chromosomes possess weak signals. This was consistent with the estimated copy numbers of the 192-bp repeats in the ancestral species of hexaploid wheat.  相似文献   

4.
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.  相似文献   

5.
Two substitution lines, designated as 930498 and 930483, and one addition line, designated as 930029, via Fo immature embryo culture of Triticum aestivum x octoploid triticale ( x Triti-cosecale Wittmack) were identified. Fluorescence in situ hybridization (FISH) using total genomic DNA of rye ( Secale cereale L. ) as probe corroborated the existence of rye chromosomes, further confirmed through chromosome paring at meiotic metaphase 1, C-banding and glutenin SDS- PAGE. The results demonstrated that the two substitution lines are ID/IR, and the addition line is also IR addition. Rye chromosomes that are distinct to the red-colored wheat chromosomes appear yellow-green at mitotic metaphase after FISH.  相似文献   

6.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

7.
Summary The objectives of this study were to determine if biotin-labelled total genomic DNA of rye (Secale cereale L.) could be used to (i) preferentially label rye meiotic chromosomes in triticale and (ii) detect translocation stocks at interphase and/or early prophase by in situ hybridization. Welsh triticale, a wheat-rye segmental amphiploid, and Kavkaz wheat, a wheat-rye translocation were used. The results indicated that labelled chromosomes of rye and unlabelled chromosomes of wheat could be observed throughout all meiotic stages in the triticale. For Kavkaz wheat, the presence of the translocated 1RS chromosome arm of rye was detected at the interphase or very early prophase stage. Rapid assessment of feasibility of gene transfers and detection of alien DNA in somatic cells at the interphase stage by in situ hybridization allows for rapid decision-making and saves time and expense in plant breeding programs.Plant Research Centre Contribution No. 1276  相似文献   

8.
The origin and molecular structure of the midget chromosome that is retained in a common wheat with rye cytoplasm, were studied by using fluorescent in situ hybridization (FISH). FISH with biotinylated rye genomic DNA as a probe clearly showed that the midget chromosome had originated from certain part(s) of rye chromosome(s). The midget chromosome did not possess sequences similar to wheat rDNA nor to a rye telomeric sequence with a 350 bp repeat unit. However, another repetitive sequence (120 bp family) of rye was found to occur at one end of the midget chromosome. The telomeric repeat sequences from Arabidopsis thaliana cross-hybridized to both ends of the midget chromosome as well as to wheat chromosomes. From the results obtained in this and previous studies, it is assumed that the midget chromosome originated from part of a rye chromosome, most likely the centromeric region of chromosome 1R, and that the telomeric sequences were synthesized de novo.by R. Appels  相似文献   

9.
The genomic composition of Tricepiro, a synthetic forage crop.   总被引:4,自引:0,他引:4  
Chromosome in situ hybridization (FISH and GISH) is a powerful tool for determining the chromosomal location of specific sequences and for analysing genome organization and evolution. Tricepiro (2n = 6x = 42) is a synthetic cereal obtained by G. Covas in Argentina (1972), which crosses hexaploid triticale (2n = 6x = 42) and octoploid Trigopiro (2n = 8x = 56). Several years of breeding produced a forage crop with valuable characteristics from Secale, Triticum, and Thinopyrum. The aim of this work is to analyse the real genomic constitution of this important synthetic crop. In situ hybridization using total DNA of Secale, Triticum, and Thinopyrum as a probe (GISH) labelled with biotin and (or) digoxigenin showed that tricepiro is composed of 14 rye chromosomes and 28 wheat chromosomes. Small zones of introgression of Thinopyrum on wheat chromosomes were detected. The FISH using the rye repetitive DNA probe pSc 119.2 labelled with biotin let us characterize the seven pairs of rye chromosomes. Moreover, several wheat chromosomes belonging to A and B genomes were distinguished. Therefore, tricepiro is a synthetic hexaploid (2n = 6x = 42) being AABBRR in its genomic composition, with zones of introgression of Thinopyrum in the A genome of wheat.  相似文献   

10.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

11.
首先对显微分离出的黑麦(SecalecerealeL.)1R染色体进行了两轮Sau3A连接接头介导的PCR扩增(LA_PCR)。经Southern杂交证实这些染色体扩增片段来源于基因组DNA之后,再利用1R染色体的第二轮扩增产物、黑麦基因组DNA、rDNA基因为探针,与其根尖细胞中期分裂相进行染色体原位杂交,发现微分离的1R染色体体外扩增产物中包含大量的非该染色体特异性重复序列,而其信息量却较黑麦总基因组少;当以适量的黑麦基因组DNA进行封阻时,微分离染色体的体外扩增产物成功地被重新定位在中期分裂相的一对1R染色体上,说明微分离1R染色体的PCR扩增产物中的确包含了该染色体特异性的片段。此外,以从1R染色体微克隆文库中筛选出的一单、低拷贝序列和一高度重复序列分别为探针,染色体原位杂交检测发现,这一高度重复序列可能为端粒相关序列;而单、低拷贝序列却未检测到杂交信号。这些结果从不同侧面反映出染色体着染技术是证实微分离、微切割染色体的真实来源及筛选染色体特异性探针的有利工具。建立了可供参考的植物染色体着染实验体系,为染色体微克隆技术在植物中的进一步应用提供了便利。  相似文献   

12.
A Cabrera  B Friebe  J Jiang  B S Gill 《Génome》1995,38(3):435-442
C-banding patterns of Hordeum chilense and of Triticum aestivum 'Chinese Spring' - H. chilense disomic addition lines were analyzed and compared with in situ hybridization patterns using a biotin-labeled highly repetitive Triticum tauschii DNA sequence, pAs1, and a wheat 18S-26S rDNA probe. All seven H. chilense chromosomes pairs and the added H. chilense chromosomes present in the addition lines were identified by their characteristic C-banding pattern. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent H. chilense accession. A C-banded karyotype of the added H. chilense chromosomes was constructed and chromosome lengths, arm ratios, and relative length, as compared with chromosome 3B, were determined. The probe pAs1 was found to hybridize to specific areas on telomeres and interstitial sites along the chromosomes, allowing the identification of all seven pairs of the H. chilense chromosomes. Comparison of the patterns of distribution of the hybridization sites of clone pAs1 in the T. tauschii and H. chilense chromosomes was carried out by in situ hybridization on somatic metaphase chromosomes of the HchHchDD amphiploid. In situ hybridization using the 18S-26S rDNA probe confirmed that the H. chilense chromosomes 5Hch and 6Hch were carrying nucleolus organizer regions. The results are discussed on the basis of phylogenetic relationships between D and Hch genomes.  相似文献   

13.
Structure of the rye midget chromosome analyzed by FISH and C-banding.   总被引:3,自引:0,他引:3  
S A Jackson  J Jiang  B Friebe  B S Gill 《Génome》1997,40(5):782-784
The diminutive "midget" chromosome derived from rye (Secale cereale) was analyzed by C-banding and fluorescence in situ hybridization (FISH) using DNA probe pSau3A9 that is located in the centromeres of cereal chromosomes. FISH signals were detected at one end and overlapped one of the two telomeres of the midget, indicating that the midget is a telocentric chromosome. The FISH and C-banding results show that the centromere of the midget chromosome is smaller than those of normal wheat and rye chromosomes. These results indicate that one of the breakpoints occurred in the middle of the centromere of rye chromosome 1R during generation of the midget.  相似文献   

14.
Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.  相似文献   

15.
采用顺序基因组原位杂交和双色荧光原位杂交技术,对普通小麦-簇毛麦6v代换系K0736的45S rDNA和5S rDNA基因位点进行了分析.结果表明,该代换系2n=42,有1对簇毛麦6V染色体,为6V/6A代换系,45S rDNA位点有8对,位于7对染色体上.5S rDNA位点有6对,分别位于6对染色体上.在1AS、1BS、5DS的端部同时存在458 rDNA和5S rDNA位点,并在物理位置上紧密相邻.同时讨论了rDNA位点的数目和分布位置存在变异的可能因素.  相似文献   

16.
亚比棉基因组原位杂交及核型分析   总被引:4,自引:0,他引:4  
亚比棉异源四倍体是山西农业大学棉花育种组于上个世纪80年代用A染色体组亚洲棉(Gossypium.arboreum)(迁西小黑籽)与G染色体组野生棉比克氏棉(G.bickii)杂交成异源二倍体后,又经过加倍而获得的.亚比棉异源四倍体不仅育性得到恢复、结铃正常,而且成功地将比克氏棉的优异性状--种子腺体延缓形成转育到亚比棉中.这为实现棉花综合利用和提高抗虫性创育了新的育种材料.在随后的多年中,山西农业大学棉花育种组对亚比棉异源四倍体进行了广泛的细胞形态学研究,对其核型做了分析.然而,仅依据形态学和普通的核型图像,还不能确定该异源四倍体棉种中比克氏棉G染色体(亚)组在核型中的表现.该文以比克氏棉gDNA为探针,亚比棉异源四倍体根尖体细胞染色体为靶细胞染色体,封阻材料为亚洲棉(迁西小黑籽),进行亚比棉基因组原位杂交(Genome in situ hybridization,GISH)及核型分析.从获得的图像中可以清晰地发现有52条染色体,其中有/无杂交信号的各一半,这直观地证实了人工复合亚比棉杂交种确为异源四倍体,而且是双二倍体.A亚组与G亚组染色体长度存在交替排列.亚比棉异源四倍体基于GISH图像的核型公式为2n=4x=52=46m(4sat)+6sm(4sat).A亚组和G亚组染色体上各有2对随体.G亚组染色体中至少有5对双重显色明显的染色体,意味着可能有A亚组染色体的交换,而A亚组染色体中只观察到或多或少的探针红色荧光信号,由于分辨率不够而难于定量分析.进一步以45SrDNA为探针,以鲑鱼精DNA作为封阻DNA,对亚比棉异源四倍体进行45SrDNA-FISH,实验表明,亚比棉异源四倍体有14个NOR(核仁组织区)信号,说明亚比棉异源四倍体有14个随体,即7对随体.比克氏棉对亚洲棉的GISH结果显示,在有亚洲棉DNA封阻的条件下,亚洲棉靶细胞染色体无任何杂交信号,说明比克氏棉与亚洲棉染色体之间不存在较大的同源或相似序列.  相似文献   

17.
Nkongolo KK  Kim NS  Michael P 《Hereditas》2004,140(1):70-78
Sequences homologous to the pKFJ660 probe, a fragment of DNA derived from the rice blast fungus (Magnaporthe grisea) carrying TC/AG repeat microsatellite sequences and 30 bp direct repeats were identified in the genome of Picea (spruce) and Pinus (pine) species by fluorescence in situ hybridization (FISH) and slot blot analyses. Slot blot analysis using the pKFJ660 probe revealed hybridization signals with genomic DNAs from various pine and spruce species. Further analyses indicated that the copy number of the (AG)30 motif was higher than 5 x 10(4) per plant genome for all plant samples tested, but the copy number of the sequences homologous to the whole pKFJ660 probe varies considerably among the 25 plant species tested. In situ hybridization of metaphase chromosomes from Pinus resinosa, P. banksiana and P. strobus showed the presence of sequences homologous to this probe on several chromosomes in a dispersed pattern. Major signals were observed on a few chromosomes indicating that some of these sequences are clustered in specific genomic locations. The locations of these repeats were compared to those of 18S-5.8S-26S rDNA in pine species. Chromosomal distribution of 18S-5.8S-26S rDNA varied among the three pine species (P. resinosa, P. banksiana and P. strobus) studied. Ribosomal DNA (rDNA) sites were identified on 14 to 20 chromosomes in these pine species.  相似文献   

18.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   

19.
The old Portuguese wheat landrace aggregate known as 'Barbela' shows good productivity under the low-fertility conditions often associated with acid soils. The use of genomic rye DNA, in combination with 45S rDNA and the repetitive sequences dpTal and pScl 19.2 as probes, in two sequential in situ hybridization steps enabled the identification of all chromosomes in the 'Barbela' wheat lines and the detection of the introgression of rye-origin chromatin onto wheat chromosome arm 2DL in two of the lines. Amplification of microsatellite loci using published primer pairs showed that the distal segment of wheat chromosome 2DL, which was involved in the rye translocation, was deleted. The identification and characterization of small recombinant chromosome segments in wheat-rye lines may allow their use in plant breeding programmes. Their presence in farmer-maintained material demonstrates the importance of maintaining, characterizing, and collecting landrace material before valuable genetic combinations are lost as uniform commercial crops are introduced.  相似文献   

20.
The physical distribution of ten simple-sequence repeated DNA motifs (SSRs) was studied on chromosomes of bread wheat, rye and hexaploid triticale. Oligomers with repeated di-, tri- or tetra-nucleotide motifs were used as probes for fluorescence in situ hybridization to root-tip metaphase and anther pachytene chromosomes. All motifs showed dispersed hybridization signals of varying strengths on all chromosomes. In addition, the motifs (AG)12, (CAT)5, (AAG)5, (GCC)5 and, in particular, (GACA)4 hybridized strongly to pericentromeric and multiple intercalary sites on the B genome chromosomes and on chromosome 4A of wheat, giving diagnostic patterns that resembled N-banding. In rye, all chromosomes showed strong hybridization of (GACA)4 at many intercalary sites that did not correspond to any other known banding pattern, but allowed identification of all R genome chromosome arms. Overall, SSR hybridization signals were found in related chromosome positions independently of the motif used and showed remarkably similar distribution patterns in wheat and rye, indicating the special role of SSRs in chromosome organization as a possible ancient genomic component of the tribe Triticeae (Gramineae). Received: 13 February 1998; in revised form: 18 August 1998 / Accepted: 18 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号