首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Studying the genetic history of the Orang Asli of Peninsular Malaysia can provide crucial clues to the peopling of Southeast Asia as a whole. We have analyzed mitochondrial DNA (mtDNAs) control-region and coding-region markers in 447 mtDNAs from the region, including 260 Orang Asli, representative of each of the traditional groupings, the Semang, the Senoi, and the Aboriginal Malays, allowing us to test hypotheses about their origins. All of the Orang Asli groups have undergone high levels of genetic drift, but phylogeographic traces nevertheless remain of the ancestry of their maternal lineages. The Semang have a deep ancestry within the Malay Peninsula, dating to the initial settlement from Africa >50,000 years ago. The Senoi appear to be a composite group, with approximately half of the maternal lineages tracing back to the ancestors of the Semang and about half to Indochina. This is in agreement with the suggestion that they represent the descendants of early Austroasiatic speaking agriculturalists, who brought both their language and their technology to the southern part of the peninsula approximately 4,000 years ago and coalesced with the indigenous population. The Aboriginal Malays are more diverse, and although they show some connections with island Southeast Asia, as expected, they also harbor haplogroups that are either novel or rare elsewhere. Contrary to expectations, complete mtDNA genome sequences from one of these, R9b, suggest an ancestry in Indochina around the time of the Last Glacial Maximum, followed by an early-Holocene dispersal through the Malay Peninsula into island Southeast Asia.  相似文献   

2.
The Hui people are unique among Chinese ethnic minorities in that they speak the same language as Han Chinese (HAN) but practice Islam. However, as the second-largest minority group in China numbering well over 10 million, the Huis are under-represented in both global and regional genomic studies. Here, we present the first whole-genome sequencing effort of 234 Hui individuals (NXH) aged over 60 who have been living in Ningxia, where the Huis are mostly concentrated. NXH are genetically more similar to East Asian than to any other global populations. In particular, the genetic differentiation between NXH and HAN (FST = 0.0015) is only slightly larger than that between northern and southern HAN (FST = 0.0010), largely attributed to the western ancestry in NXH (∼10%). Highly differentiated functional variants between NXH and HAN were identified in genes associated with skin pigmentation (e.g., SLC24A5), facial morphology (e.g., EDAR), and lipid metabolism (e.g., ABCG8). The Huis are also distinct from other Muslim groups such as the Uyghurs (FST = 0.0187), especially, NXH derived much less western ancestry (∼10%) compared with the Uyghurs (∼50%). Modeling admixture history indicated that NXH experienced an episode of two-wave admixture. An ancient admixture occurred ∼1,025 years ago, reflecting the intensive west–east contacts during the late Tang Dynasty, and the Five Dynasties and Ten Kingdoms period. A recent admixture occurred ∼500 years ago, corresponding to the Ming Dynasty. Notably, we identified considerable sex-biased admixture, that is, excess of western males and eastern females contributing to the NXH gene pool. The origins and the genomic diversity of the Hui people imply the complex history of contacts between western and eastern Eurasians.  相似文献   

3.
Because of past limitations in samples and genotyping technologies, important questions about the history of the present-day Greenlandic population remain unanswered. In an effort to answer these questions and in general investigate the genetic history of the Greenlandic population, we analyzed ∼200,000 SNPs from more than 10% of the adult Greenlandic population (n = 4,674). We found that recent gene flow from Europe has had a substantial impact on the population: more than 80% of the Greenlanders have some European ancestry (on average ∼25% of their genome). However, we also found that the amount of recent European gene flow varies across Greenland and is far smaller in the more historically isolated areas in the north and east and in the small villages in the south. Furthermore, we found that there is substantial population structure in the Inuit genetic component of the Greenlanders and that individuals from the east, west, and north can be distinguished from each other. Moreover, the genetic differences in the Inuit ancestry are consistent with a single colonization wave of the island from north to west to south to east. Although it has been speculated that there has been historical admixture between the Norse Vikings who lived in Greenland for a limited period ∼600–1,000 years ago and the Inuit, we found no evidence supporting this hypothesis. Similarly, we found no evidence supporting a previously hypothesized admixture event between the Inuit in East Greenland and the Dorset people, who lived in Greenland before the Inuit.  相似文献   

4.
Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria–Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100–1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.  相似文献   

5.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

6.
A Taiwan origin for the expansion of the Austronesian languages and their speakers is well supported by linguistic and archaeological evidence. However, human genetic evidence is more controversial. Until now, there had been no ancient skeletal evidence of a potential Austronesian-speaking ancestor prior to the Taiwan Neolithic ∼6,000 years ago, and genetic studies have largely ignored the role of genetic diversity within Taiwan as well as the origins of Formosans. We address these issues via analysis of a complete mitochondrial DNA genome sequence of an ∼8,000-year-old skeleton from Liang Island (located between China and Taiwan) and 550 mtDNA genome sequences from 8 aboriginal (highland) Formosan and 4 other Taiwanese groups. We show that the Liangdao Man mtDNA sequence is closest to Formosans, provides a link to southern China, and has the most ancestral haplogroup E sequence found among extant Austronesian speakers. Bayesian phylogenetic analysis allows us to reconstruct a history of early Austronesians arriving in Taiwan in the north ∼6,000 years ago, spreading rapidly to the south, and leaving Taiwan ∼4,000 years ago to spread throughout Island Southeast Asia, Madagascar, and Oceania.  相似文献   

7.
The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.  相似文献   

8.
Thailand and Laos, located in the center of Mainland Southeast Asia (MSEA), harbor diverse ethnolinguistic groups encompassing all five language families of MSEA: Tai-Kadai (TK), Austroasiatic (AA), Sino-Tibetan (ST), Hmong-Mien (HM), and Austronesian (AN). Previous genetic studies of Thai/Lao populations have focused almost exclusively on uniparental markers and there is a paucity of genome-wide studies. We therefore generated genome-wide SNP data for 33 ethnolinguistic groups, belonging to the five MSEA language families from Thailand and Laos, and analyzed these together with data from modern Asian populations and SEA ancient samples. Overall, we find genetic structure according to language family, albeit with heterogeneity in the AA-, HM-, and ST-speaking groups, and in the hill tribes, that reflects both population interactions and genetic drift. For the TK speaking groups, we find localized genetic structure that is driven by different levels of interaction with other groups in the same geographic region. Several Thai groups exhibit admixture from South Asia, which we date to ∼600–1000 years ago, corresponding to a time of intensive international trade networks that had a major cultural impact on Thailand. An AN group from Southern Thailand shows both South Asian admixture as well as overall affinities with AA-speaking groups in the region, suggesting an impact of cultural diffusion. Overall, we provide the first detailed insights into the genetic profiles of Thai/Lao ethnolinguistic groups, which should be helpful for reconstructing human genetic history in MSEA and selecting populations for participation in ongoing whole genome sequence and biomedical studies.  相似文献   

9.
The dispersal of rice (Oryza sativa) following domestication influenced massive social and cultural changes across South, East, and Southeast (SE) Asia. The history of dispersal across islands of SE Asia, and the role of Taiwan and the Austronesian expansion in this process remain largely unresolved. Here, we reconstructed the routes of dispersal of O. sativa ssp. japonica rice to Taiwan and the northern Philippines using whole-genome resequencing of indigenous rice landraces coupled with archaeological and paleoclimate data. Our results indicate that japonica rice found in the northern Philippines diverged from Indonesian landraces as early as 3,500 years before present (BP). In contrast, rice cultivated by the indigenous peoples of the Taiwanese mountains has complex origins. It comprises two distinct populations, each best explained as a result of admixture between temperate japonica that presumably came from northeast Asia, and tropical japonica from the northern Philippines and mainland SE Asia, respectively. We find that the temperate japonica component of these indigenous Taiwan populations diverged from northeast Asia subpopulations at about 2,600 BP, whereas gene flow from the northern Philippines had begun before ∼1,300  BP. This coincides with a period of intensified trade established across the South China Sea. Finally, we find evidence for positive selection acting on distinct genomic regions in different rice subpopulations, indicating local adaptation associated with the spread of japonica rice.  相似文献   

10.
The boundaries between oceanographic domains often function as dispersal barriers for many temperate marine species with a dispersive pelagic larval phase. Yelloweye rockfish (Sebastes ruberrimus, YR) are widely distributed across the northeastern Pacific Ocean, inhabiting coastal rocky reefs from the Aleutian Islands in Alaska through southern California. This species exhibits an extended pelagic larval duration and has the capacity for long distance larval transport. We assayed 2,862 YR individuals from 13 general areas in the northeast Pacific Ocean for allelic variation at nine microsatellite loci. Bayesian model-based clustering analyses grouped individuals from the Strait of Georgia (SG) into a distinct genetic cluster, while individuals from outer coastal water locations (OCLs) were partitioned equally across two genetic clusters, including the cluster associated with the SG fish. Pairwise FST values were consistently an order of magnitude higher for comparisons between the SG and OCLs than they were for all OCL-OCL comparisons (∼0.016 vs. ∼0.001). This same pattern was observed across two time points when individuals were binned into an “old” and “young” group according to birth year (old: ∼0.020 vs. 0.0003; young: ∼0.020 vs. ∼0.004). Additionally, mean allelic richness was markedly lower within the SG compared to the OCLs (8.00 vs. 10.54–11.77). These results indicate that the Strait of Georgia “deep-basin” estuary oceanographic domain acts as a dispersal barrier from the outer coastal waters via the Juan de Fuca Strait. Alternatively, selection against maladapted dispersers across this oceanographic transition may underlie the observed genetic differentiation between the Georgia basin and the outer coastal waters, and further work is needed to confirm the SG-OCL divide acts as a barrier to larval dispersal.  相似文献   

11.
Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.  相似文献   

12.
13.

Background

The burden of breast cancer in Asia is escalating. We evaluated the impact of ethnicity on survival after breast cancer in the multi-ethnic region of South East Asia.

Methodology/Principal Findings

Using the Singapore-Malaysia hospital-based breast cancer registry, we analyzed the association between ethnicity and mortality following breast cancer in 5,264 patients diagnosed between 1990 and 2007 (Chinese: 71.6%, Malay: 18.4%, Indian: 10.0%). We compared survival rates between ethnic groups and calculated adjusted hazard ratios (HR) to estimate the independent effect of ethnicity on survival. Malays (n = 968) presented at a significantly younger age, with larger tumors, and at later stages than the Chinese and Indians. Malays were also more likely to have axillary lymph node metastasis at similar tumor sizes and to have hormone receptor negative and poorly differentiated tumors. Five year overall survival was highest in the Chinese women (75.8%; 95%CI: 74.4%–77.3%) followed by Indians (68.0%; 95%CI: 63.8%–72.2%), and Malays (58.5%; 95%CI: 55.2%–61.7%). Compared to the Chinese, Malay ethnicity was associated with significantly higher risk of all-cause mortality (HR: 1.34; 95%CI: 1.19–1.51), independent of age, stage, tumor characteristics and treatment. Indian ethnicity was not significantly associated with risk of mortality after breast cancer compared to the Chinese (HR: 1.14; 95%CI: 0.98–1.34).

Conclusion

In South East Asia, Malay ethnicity is independently associated with poorer survival after breast cancer. Research into underlying reasons, potentially including variations in tumor biology, psychosocial factors, treatment responsiveness and lifestyle after diagnosis, is warranted.  相似文献   

14.
We report a study of genome-wide, dense SNP (∼900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations. We developed a strategy to detect the signature of selection prior to and following putative admixture events. Several genomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of both San and Eurasian ancestry, which were considered the footprints of selection after population admixture. Several SNPs with strong allele frequency differences were observed predominantly between the admixed indigenous southern African populations, and their ancestral Eurasian populations. Interestingly, many candidate genes, which were identified within the genomic regions showing signals for selection, were associated with southern African-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuberculosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially important role that these genes might have played in adapting to the environment. Additionally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy number variation and genome-wide admixture highlight, and support the unique position of San relative to both African and non-African populations. This study contributes to a better understanding of population ancestry and selection in south-eastern African populations; and the data and results obtained will support research into the genetic contributions to infectious as well as non-communicable diseases in the region.  相似文献   

15.
Following up on our previous study, we conducted a genome-wide analysis of admixture for two Uyghur population samples (HGDP-UG and PanAsia-UG), collected from the northern and southern regions of Xinjiang in China, respectively. Both HGDP-UG and PanAsia-UG showed a substantial admixture of East-Asian (EAS) and European (EUR) ancestries, with an empirical estimation of ancestry contribution of 53:47 (EAS:EUR) and 48:52 for HGDP-UG and PanAsia-UG, respectively. The effective admixture time under a model with a single pulse of admixture was estimated as 110 generations and 129 generations, or admixture events occurred about 2200 and 2580 years ago for HGDP-UG and PanAsia-UG, respectively, assuming an average of 20 yr per generation. Despite Uyghurs' earlier history compared to other admixture populations, admixture mapping, holds promise for this population, because of its large size and its mixture of ancestry from different continents. We screened multiple databases and identified a genome-wide single-nucleotide polymorphism panel that can distinguish EAS and EUR ancestry of chromosomal segments in Uyghurs. The panel contains 8150 ancestry-informative markers (AIMs) showing large frequency differences between EAS and EUR populations (FST > 0.25, mean FST = 0.43) but small frequency differences (7999 AIMs validated) within both populations (FST < 0.05, mean FST < 0.01). We evaluated the effectiveness of this admixture map for localizing disease genes in two Uyghur populations. To our knowledge, our map constitutes the first practical resource for admixture mapping in Uyghurs, and it will enable studies of diseases showing differences in genetic risk between EUR and EAS populations.  相似文献   

16.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

17.
Achieving a theoretical foundation for malaria elimination will require a detailed understanding of the quantitative relationships between patient treatment-seeking behavior, treatment coverage, and the effects of curative therapies that also block Plasmodium parasite transmission to mosquito vectors. Here, we report a mechanistic, within-host mathematical model that uses pharmacokinetic (PK) and pharmacodynamic (PD) data to simulate the effects of artemisinin-based combination therapies (ACTs) on Plasmodium falciparum transmission. To contextualize this model, we created a set of global maps of the fold reductions that would be necessary to reduce the malaria RC (i.e. its basic reproductive number under control) to below 1 and thus interrupt transmission. This modeling was applied to low-transmission settings, defined as having a R0<10 based on 2010 data. Our modeling predicts that treating 93–98% of symptomatic infections with an ACT within five days of fever onset would interrupt malaria transmission for ∼91% of the at-risk population of Southeast Asia and ∼74% of the global at-risk population, and lead these populations towards malaria elimination. This level of treatment coverage corresponds to an estimated 81–85% of all infected individuals in these settings. At this coverage level with ACTs, the addition of the gametocytocidal agent primaquine affords no major gains in transmission reduction. Indeed, we estimate that it would require switching ∼180 people from ACTs to ACTs plus primaquine to achieve the same transmission reduction as switching a single individual from untreated to treated with ACTs. Our model thus predicts that the addition of gametocytocidal drugs to treatment regimens provides very small population-wide benefits and that the focus of control efforts in Southeast Asia should be on increasing prompt ACT coverage. Prospects for elimination in much of Sub-Saharan Africa appear far less favorable currently, due to high rates of infection and less frequent and less rapid treatment.  相似文献   

18.
The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6–26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39–21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.  相似文献   

19.
The population genetic structure of Native Hawaiians has yet to be comprehensively studied, and the ancestral origins of Polynesians remain in question. In this study, we utilized high-resolution genome-wide SNP data and mitochondrial genomes of 148 and 160 Native Hawaiians, respectively, to characterize their population structure of the nuclear and mitochondrial genomes, ancestral origins, and population expansion. Native Hawaiians, who self-reported full Native Hawaiian heritage, demonstrated 78% Native Hawaiian, 11.5% European, and 7.8% Asian ancestry with 99% belonging to the B4 mitochondrial haplogroup. The estimated proportions of Native Hawaiian ancestry for those who reported mixed ancestry (i.e. 75% and 50% Native Hawaiian heritage) were found to be consistent with their self-reported heritage. A significant proportion of Melanesian ancestry (mean = 32%) was estimated in 100% self-reported Native Hawaiians in an ADMIXTURE analysis of Asian, Melanesian, and Native Hawaiian populations of K = 2, where K denotes the number of ancestral populations. This notable proportion of Melanesian admixture supports the “Slow-Boat” model of migration of ancestral Polynesian populations from East Asia to the Pacific Islands. In addition, approximately 1,300 years ago a single, strong expansion of the Native Hawaiian population was estimated. By providing important insight into the underlying population structure of Native Hawaiians, this study lays the foundation for future genetic association studies of this U.S. minority population.  相似文献   

20.
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号