首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用酶联免疫吸附法(ELISA)测定番茄(Lycopersicon esculentum Mill大红品种)果实成熟过程中钙调素(CaM)含量的变化。果实开始成熟(发白期),CaM含量随着呼吸跃变上升,成熟时(粉红期)达到最大,过熟衰老时则下降。果实内部乙烯浓度、ACC含量及其合成酶活性也随跃变而增加,随过熟衰老而降低。GaM含量在果实不同部位中的分布有明显差异,跃变上升期以子房腔组织含量最高,并由中心向外逐渐降低,外周果皮含量最低。此时用外源乙烯催熟处理促进各部位CaM增加。成熟衰老时子房腔组织首先衰老,CaM含量大为降低,但在中柱和果皮中却高于跃变上升期。外源乙烯促进衰老使CaM下降。Ca~(2+)促进番茄圆片CaM含量增高和乙烯产生,CaM抑制剂CPZ,TFP在降低CaM含量的同时也抑制乙烯的产生。  相似文献   

2.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

3.
Co2+ promoted elongation of hypocotyl segments of light-grown cucumber (Cucumis sativus) seedlings. Time course and dose response data are presented and interactions with IAA, gibberellin, cyclohexanol, and cotyledons described. Segments without cotyledons responded to Co2+ only if grown in gas-tight vessels with IAA added. When bases of cotyledons were ringed with an inhibitor of auxin transport, Co2+ caused no growth promotion in the hypocotyl. Co2+ prevented lateral swelling of hypocotyls treated with supraoptimal IAA. Removal of ethylene from the atmosphere reduced the Co2+ response, but Co2+ did not counteract the inhibitory effect of increased ethylene levels. These results are consistent with the hypothesis that Co2+ promotes hypocotyl elongation by inhibiting ethylene production. The hypothesis was confirmed by a direct demonstration that Co2+, at growth-promoting concentrations, powerfully inhibited ethylene production in the cucumber hypocotyl.  相似文献   

4.
Inhibition of ethylene production by cobaltous ion   总被引:10,自引:13,他引:10       下载免费PDF全文
Lau OL  Yang SF 《Plant physiology》1976,58(1):114-117
The effect of Co2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co2+, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca2+, kinetin plus Ca2+, or Cu2+ treatments in mung bean hypocotyl segments. While Co2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni2+, which belongs to the same group as Co2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues.  相似文献   

5.
The effect of two auxin antagonists, 2,3,5-triiodobenzoic acid (TIBA) and 2-( p -chlorophenoxy)-2-methyl propionic acid (CMPA) on IAA-induced ethylene production in etiolated mung bean hypocotyl ( Vigna radiata L. Rwilcz cv. Berken) segments was studied. Both TIBA and CMPA inhibited IAA-induced ethylene production and CO2 production at concentrations from 0.001 m M to 0.1 m M and 0.01 m M to 1.0 m M , respectively. The optimum concentration for inhibition of ethylene production by TIBA was 0.05 m M and CMPA was 0.5 m M . At the optimum concentration of TIBA and CMPA, there was a significant decrease in IAA-induced ethylene production without a decrease in respiration rates below control levels. After 18 h, mung bean hypocotyl segments treated with 0.05 m M TIBA for 6 h or 0.5 m M CMPA for 8 h showed a maximum inhibition of IAA-induced ethylene production. Treatments longer than 8 h caused no further inhibition. The uptake of [14C]-naphthaleneacetic acid by mung bean segments was greatly reduced by the addition of either TIBA (0.05m M ) or CMPA (0.5 m M ) to the incubation media. The results of treatment sequences showed that TIBA needed to be applied prior to IAA in order to inhibit IAA-induced ethylene production, but CMPA caused the same inhibitory effect whether applied before or after IAA treatment. These findings provide evidence that TIBA inhibits auxin-induced ethylene production in etiolated mung bean hypocotyl segments by blocking auxin movement into the tissue whereas CMPA may work on both auxin transport and action.  相似文献   

6.
Relevant effects of ethylene and Ca2+ on germination of lettuce (lactuce sative L.) seeds were investigated. It was shown previously that lettuce seeds were highly sensitive ro temperatures. More than 70% of seeds germinated at 22℃, but they ceased to germinate at 25℃. 40%–50% of seeds could be induced to germinate after imbibition with 400 ppm exogenous ethylene for 3 days at 25℃. The amounts of endogenous ethylene liberated at 22℃ were much greater than those at 25℃. Ethyleneglycol bis NN tetraacetic acid(EGTA, Ca2+ specified chelating regent) La3+, Co2+ and chlorpromazin(CPZ, calmodulin antagonist) could be used ant only to inhibit germination at 22℃, but also to inhibit germination induced by ethylene at 25℃. Although La3+ and CPZ inhibited seed germination, they could not repress the production of ethylene at 22℃. It was suggested that Ca2+ and CaM affected the induction response of ethylene to lettuce seed germination, but had no effect on ethylene liberation. Co2+ could be applied to inhibit the action as well as its production of ethylene.  相似文献   

7.
Several properties of the proteinaceous inhibitor of ethylenebiosynthesis are described. The inhibitor reversibly inhibitedethylene production by auxin-treated hypocotyl segments of etiolatedmungbean seedlings. It also inhibited endogenous ethylene formation.Fluorescence microscopy of tissue treated with the inhibitorlabeled with a fluorescent dye, FITC, revealed that the actionof the inhibitor only on epidermal cells was enough to achieveinhibition. The site of auxin-induced ethylene production wasassumed to be the epidermis. The inhibitor inhibits neitherrespiration of hypocotyl segments nor auxin-induced elongationgrowth of wheat coleoptiles. Relative levels of free IAA intissue were not altered by the inhibitor, but IA-Asp formationwas reversively suppressed. A possible interrelation between ethylene production and IA-Aspformation is discussed (Received March 30, 1973; )  相似文献   

8.
The suggestion that indole-3-acetic acid (IAA)-stimulated ethylene production is associated with oxidative degradation of IAA and is mediated by 3-methyleneoxindole (MOI) has been tested in mung bean (Phaseolus aureus Roxb.) hypocotyl segments. While IAA actively stimulated ethylene production, MOI and indole-3-aldehyde, the major products of IAA oxidation, were inactive. Tissues treated with a mixture of intermediates of IAA oxidation, obtained from a 1-hour incubation of IAA with peroxidase, failed to stimulate ethylene production. Furthermore, chlorogenic acid and p-coumaric acid, which are known to interfere with the enzymic oxidation of IAA to MOI, had no effect on IAA-stimulated ethylene production. Other oxidation products of IAA, including oxindole-3-acetic acid, indole-3-carboxylic acid, (2-sulfoindole)-3-acetic acid, and dioxindole-3-acetic acid, were all inactive. 1-Naphthaleneacetic acid was as active as IAA in stimulating ethylene production but was decarboxylated at a much lower rate than IAA, suggesting that oxidative decarboxylation of auxins is not linked to ethylene production. These results demonstrate that IAA-stimulated ethylene production in mung bean hypocotyl tissue is not mediated by MOI or other associated oxidative products of IAA.  相似文献   

9.
研究了Ca2+ 对番茄(Lycopersicon esculentum Mill cv. Lichun)黄化幼苗乙烯反应的影响.通过测定不同Ca2+ 浓度条件下番茄黄化幼苗的"三重反应"、内源乙烯释放量、乙烯受体基因NEVER-RIPE(NR)表达量及胞内CaM含量的变化,结果发现,随着培养基中Ca2+ 浓度从0 mmol/L增加到3.8 mmol/L,番茄黄化幼苗的"三重反应"表型明显增强,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加;当Ca2+ 浓度由3.8 mmol/L进一步增加到10 mmol/L时,番茄黄化幼苗"三重反应"表型受到抑制,内源乙烯释放量、 NR基因的表达量及胞内CaM的含量都有所下降.因此,Ca2+ 对番茄黄化幼苗"三重反应"的影响与Ca2+ 调节内源乙烯合成和乙烯受体基因的表达有关,而且Ca2+ 可能是通过CaM含量的变化来调节乙烯作用的.  相似文献   

10.
钙与植物乙烯反应的关系研究   总被引:5,自引:0,他引:5  
研究了Ca2 对番茄 (LycopersiconesculentumMillcv.Lichun)黄化幼苗乙烯反应的影响。通过测定不同Ca2 浓度条件下番茄黄化幼苗的“三重反应”、内源乙烯释放量、乙烯受体基因NEVER_RIPE(NR)表达量及胞内CaM含量的变化 ,结果发现 ,随着培养基中Ca2 浓度从 0mmol/L增加到 3.8mmol/L ,番茄黄化幼苗的“三重反应”表型明显增强 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加 ;当Ca2 浓度由 3.8mmol/L进一步增加到 10mmol/L时 ,番茄黄化幼苗“三重反应”表型受到抑制 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有所下降。因此 ,Ca2 对番茄黄化幼苗“三重反应”的影响与Ca2 调节内源乙烯合成和乙烯受体基因的表达有关 ,而且Ca2 可能是通过CaM含量的变化来调节乙烯作用的  相似文献   

11.
The inhibitory protein of ethylene synthesis purified from mungbean seeds reduced ATP levels in mung bean hypocotyl segments.When the segments were incubated with 0.5mM IAA for 6 hr toinduce ethylene-producing activity, the presence of the inhibitoryprotein suppressed the ethylene production and ATP content inthe tissue about 82 and 60%, respectively. Similar suppressiveeffects were also observed for endogenous ethylene productionand ATP contents in tissue not treated with IAA. (Received June 20, 1981; Accepted October 24, 1981)  相似文献   

12.
Brassinosteroid (BR) stimulation of auxin-induced ethylene production and the particular step at which BR acts to promote such synthesis were studied in mung bean ( Vigna radiata L. Rwilcz cv. Berken) hypocotyl segments. Increasing concentrations of methionine alone and in combination with 3 μ M BR and 10 μ M IAA had a minimal effect on ethylene production. With increasing concentrations of 1-aminocyclopro-pane-1-carboxylic acid (ACC), however, ethylene production increased. BR or IAA further enhanced ethylene production with maximum rates occurring when these compounds were added together with ACC. The addition of 10 μ M CoCl2 in conjunction with BR and/or IAA resulted in 85–97% inhibition of ethylene production. When 20 μ M cycloheximide was used in conjunction with BR and/or IAA there was a complete inhibition of ethylene production. Total inhibition also resulted when 1.0 μ M aminoethoxy-vinylglycine (AVG) was used in combination with BR and/or IAA. AVG alone had no effect on ACC conversion to ethylene.  相似文献   

13.
The relationships between IAA and ABA, and between BA and ABAin their effects on ethylene production were examined with etiolatedmungbean hypocotyl segments. When ABA and IAA were simultaneouslyapplied to the tissues, ABA inhibited IAA-induced ethylene productionand the degree of inhibition was solely determined by the ABAconcentrations. Increasing concentrations of BA did not affectABA inhibition. Low concentrations of ABA slightly increasedendogenous ethylene production. When ABA and BA were appliedtogether in the presence of IAA, the degree of ABA inhibitionwas again determined by the ABA concentrations regardless ofthe BA concentrations. BA did not recover ABA inhibition andABA did not inhibit the stimulative effect of BA on both endogenousand IAA-induced ethylene production. Almost the same resultswere obtained with ABA and BA pretreatment of the tissues. Thisindicates that in the processes of IAA-induced ethylene production,IAA and ABA act in series, but that the actions at their respectivesites are independent. 1 This research was partly supported by grants from the Ministryof Education (C-956037) and the Ministry of Agriculture (49–1330)of Japan, and by the Asahi Press. (Received June 14, 1975; )  相似文献   

14.
(p-Chlorophenoxy)isobutyric acid (PCIB) inhibited indole-3-acetic acid (IAA)-induced ethylene production in etiolated mung bean hypocotyl sections. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC) was not significantly affected by PCIB, indicating that PCIB exerted its effect primarily by inhibiting the activity of the ethylene-forming enzyme (EFE). This conclusion was supported by the observations that PCIB inhibited the conversion of exogenously applied ACC to ethylene. The inhibitory effect of PCIB was already evident with 0.05 mM PCIB, and it increased with time after application of the inhibitor. PCIB also significantly inhibited ethylene production in apple fruit tissues, but it only slightly reduced the level of endogenous ACC. Similar to mung bean, EFE activity in apple tissue was significantly inhibited by PCIB. The possibility that PCIB also inhibits auxin-induced ACC synthase activity is discussed.  相似文献   

15.
Fusicoccin, an inhibitor of brassinosteroid-induced ethylene production   总被引:2,自引:0,他引:2  
Fusicoccin was evaluated for its effects on brassinosteroid (BR), indole-3-acetic acid (IAA) and BR + IAA-induced ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC-synthase production by etiolated mung bean ( Vigna radiata L. Rwilez cv. Berken) hypocotyl segments. Fusicoccin inhibition of ethylene and ACC production induced by 2 μ M BR started at concentrations as low as 0.05 μ M . Maximum inhibition occurred at a 1 μ M concentration with no further inhibition at higher concentrations tested. Fusicoccin (1 μ M ) was effective in the inhibition of BR-induced ethylene, ACC and ACC-synthase production at low and high concentrations of BR.
Fusicoccin at concentrations as high as 2 μ M had no effect on ethylene and ACC production promoted by low concentrations of IAA (1 to 10 μ M ). When higher concentrations (100–1000 μ M ) of IAA were used, fusicoccin (1 μ M ) had an inhibitory effect on ethylene and ACC production. Interestingly, fusicoccin (1 μ M ) had little or no effect on ACC-synthase promoted by high concentrations of IAA (1000 μ M ).
When BR and IAA were used in combination, fusicoccin inhibited ethylene and ACC production at concentrations as low as 0.05 μ M with maximum inhibition occurring at 0.5 μ M . At a 1 μ M concentration, fusicoccin was effective in inhibiting the synergistic stimulation of ACC-synthase promoted by BR and IAA.  相似文献   

16.
Changes in the 1-aminocyclopropane-1-carboxylate (ACC) synthaseactivity which regulates auxin-induced ethylene production werestudied in etiolated mung bean hypocotyl segments. Increasesboth in ethylene production and ACC synthase activity in tissuetreated with IAA and BA were severely inhibited by cycloheximide(CHI), 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide,actinomycin D and -amanitin. Aminoethoxyvinylglycine (AVG),a potent inhibitor of the ACC synthase reaction, increased theactivity of the enzyme in the tissue 3- to 4-fold. This stimulationalso was severely inhibited by the above inhibitors. Stimulationof the increase in the enzyme content by AVG was partially suppressedby an exogenous supply of ACC or ethylene. Suppression of theincrease in the enzyme took place with 0.3 µl/liter ethylene,and inhibition was increased to 10 µl/liter, which caused65% suppression. Air-flow incubation of the AVG-treated tissue,which greatly decreased the ethylene concentration surroundingthe tissue, further increased the amount of enzyme. Thus, oneeffect of AVG is to decrease the ethylene concentration insidethe tissue. The apparent half life of ACC synthase activity,measured by the administration of CHI, was estimated as about25 min. AVG lengthened the half life of the activity about 2-fold.Feedback repression by ethylene in the biosynthetic pathwayof auxin-induced ethylene is discussed in relation to the effectof AVG. (Received January 22, 1982; Accepted March 26, 1982)  相似文献   

17.
Galactose enhances the production of ethylene gas, and ethylene gas inhibits the movement of IAA in plant tissues. If galactose enhances ethylene production and ethylene inhibits auxin movement, then galactose should inhibit auxin movement. The above hypothesis was examined by observing the effects of d -galactose, d -inannose, d -arabinose, d -glucose, and d xylose on the uptake, presumed decarboxylation, efflux, velocity and metabolism of labeled indole-3-aectic acid in hypocotyl segments of Phaseolus vulgaris L. cv. Pinto. Galactose inhibited, arabinose and glucose enhanced, and mannose and xylose had no effect on partitioning of auxin between tissue and receptor. The reduction of auxin efflux by galactose was related to an increased presumed decarboxylation, reduced uptake and slower velocity of applied auxin. The relationship between galactose-induced growth effects, ethylene production, and auxin migration are discussed.  相似文献   

18.
Brassinosteroid (BR) and indole-3-acetic acid (IAA) were used in combination with Ca2+ in order to determine if there was a synergistic effect in the stimulation of ethylene production in etiolated mung bean ( Vigna radiata L. Rwilez ev. Berken) hypocotyl segments. Ca2+ was found to act synergistically with BR. IAA or a combination of the two in promoting a stimulation in ethylene production. EDTA, which chelates Ca2+, greatly reduced the effectiveness of calcium salts in promoting ethylene production in the presene of either BR, IAA or a combination of the two. Neither K+, Mg2+ nor Mn24 (chloride salts) acted synergistically with BR and IAA.  相似文献   

19.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

20.
含钙培养液和含激素培养液中的绿豆下胚轴原生质体在培养30min时分别检测到钙调素(CaM)峰,在含钙培养液中加入IAA或6-8ACaM含量急剧降低,这与先前的试验结果即45Ca2 积累增多和体积膨大正好对应。异博定(verapamil)、LaCl3、EGTA或W7可使激素 CaCl2处理的CaM含量不同程度地回升,甚至接近或超过对照的水平。而A23187处理或K 、Zn2 等代替Ca2 则使CaM含量保持在与激素处理相似的低水平。这也与先前观察到的45Ca2 积累和体积的变化相对应。表明钙调素在IAA和6-8A诱导绿豆下胚轴原生质体膨大过程中的境与Ca2 共同起着调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号