首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of long-term (7 days) and shortterm (up to 2 h) treatment of barley plants with jasmonic acid (JA) on the components contributing to stomatal and nonstomatal limitation of photosynthesis was studied. Net CO2 assimilation rate (A) responses to intercellular CO2 concentration (C i ), i.e., A/C i curves, were used to assess the photosynthetic ability. Long-term treatment of barley plants with JA led to a noticeable decrease in both the initial slope of the A/C i curves and the maximum A at saturating C i . The proportion of stomatal and nonstomatal factors in limitation of photosynthesis depended on the applied JA concentration. Short-term treatment with JA affected neither the stomatal conductivity for CO2 nor the rate of photosynthetic CO2 assimilation. We suggest that JA may affect photosynthesis indirectly, either as a stress-modulating substance, or through the alterations in gene expression.  相似文献   

2.
用转PEPC基因水稻(Oryza sativa L. subsp.japonica Kitaake)和原种水稻Kitaake为材料,研究了不同基因型水稻叶片中的C4光合微循环及其功能.通过测定与光合C4途径有关的关键酶,如磷酸烯醇式丙酮酸羧化酶(PEPC)、NADP -苹果酸酶(NADP -ME)、NADP -苹果酸脱氢酶(NADP -MDH)和丙酮酸磷酸双激酶(PPDK),说明原种水稻叶片中具有完整的C4光合酶体系;用外源OAA或MA饲喂叶切片或叶绿体后明显增加光合速率,证明原种水稻中具有一个有限的光合C4微循环.将玉米的PEPC基因导入原种水稻后,可大幅度提高光合C4微循环的速率.测定不同基因型的CO2交换速率,看出水稻中C4光合微循环的增强有提高净光合速率(Pn)和降低光呼吸速率/净光合速率(Pr/Pn)比值的作用.叶绿素荧光特性分析表明,C4光合微循环的增强伴随着PSⅡ电子传递效率(Fv/Fm)和光化学猝灭(qP)的增加以及非光化学猝灭(qN)的降低;这些结果为通过基因工程手段提高作物光合效率的遗传育种提供了科学根据.  相似文献   

3.
Rapidly metabolizable compounds such as glucose or glycerol were not utilized byBacillus megaterium in the absence of manganese when grown in the supplemented nutrient broth medium. Under these conditions, growth ceased at low cell titre, 3-phosphoglyceric acid accumulated inside the cells and normal sporulation process was arrested. Addition of manganese to the medium caused disappearance of 3-phosphoglyceric acid, growth resumed and normal sporulation was observed. Synthesis of 3-phosphoglyceric acid occurred only in the mother cell compartments and it was transported for accumulation inside the forespores ofBacillus megaterium when grown in supplemented nutrient broth medium. Incubation of forespores in the presence of glucose or glycerol had no effect on 3-phosphoglyceric acid synthesis/accumulation, but it was completely utilized when forespores were incubated with manganese plus ionophore (X 537A). No other metal(s) could substitute for manganese suggesting that manganese plays crucial role in 3-phosphoglyceric acid metabolism  相似文献   

4.
Ribulose bisphosphate carboxylase (RUBPCase) was localized by fluorescence and gold immunocytochemistry in Capsicum fruits. Chloroplasts of the green fruit are heavily labelled. A positive staining is also obtained with chromoplasts of the ripe rad fruit, but gold labelling is fainter. The presence of reactive RuBPCase in chromoplasts is discussed in relation with the absence of ribosomes in these plastids.  相似文献   

5.
The biochemical basis for photosynthetic plasticity in tropical trees of the genus Clusia was investigated in three species that were from contrasting habitats and showed marked differences in their capacity for crassulacean acid metabolism (CAM). Physiological, anatomical and biochemical measurements were used to relate changes in the activities/amounts of key enzymes of C3 and C4 carboxylation to physiological performance under severe drought stress. On the basis of gas-exchange measurements and day/night patterns of organic acid turnover, the species were categorised as weak CAM-inducible (C.aripoensis Britt.), C3-CAM intermediate (C. minor L.) and constitutive CAM (C.␣rosea Jacq. 9.). The categories reflect genotypic differences in physiological response to drought stress in terms of net carbon gain; in C. aripoensis net carbon gain was reduced by over 80% in drought-stressed plants whilst carbon gain was relatively unaffected after 10 d without water in C. rosea. In turn, genotypic differences in the capacity for CAM appeared to be directly related to the capacities/amounts of phosphoenolpyruvate carboxylase (PEPCase) and phosphoenolpyruvate carboxykinase (PEPCK) which increased in response to drought in both young and mature leaves. Whilst measured activities of PEPCase and PEPCK in well-watered plants of the C3-CAM intermediate C. minor were 5–10 times in excess of that required to support the magnitude of organic acid turnover induced by drought, close correlations were observed between malate accumulation/PEPCase capacity and citrate decarboxylation/PEPCK capacity in all the species. Drought stress did not affect the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein in any of the species but Rubisco activity was reduced by 35% in the weak CAM-inducible C. aripoensis. Similar amounts of glycine decarboxylase (GDC) protein were present in all three species regardless of the magnitude of CAM expression. Thus, the constitutive CAM species C. rosea did not appear to show reduced activity of this key enzyme of the photorespiratory pathway, which, in turn, may be related to the low internal conductance to CO2 in this succulent species. Immuno-histochemical techniques showed that PEPCase, PEPCK and Rubisco were present in cells of the palisade and spongy parenchyma in leaves of species performing CAM. However, in leaves from well-watered plants of C. aripoensis which only performed C3 photosynthesis, PEPCK was localized around latex-producing ducts. Differences in leaf anatomy between the species suggest that the association between mesophyll succulence and the capacity for CAM in these hemi-epiphytic stranglers has been selected for in arid environments. Received: 4 July 1997 / Accepted: 27 November 1997  相似文献   

6.
转玉米PEPC基因水稻中有限的C4光合微循环及其生理作用   总被引:10,自引:0,他引:10  
用转PEPC基因水稻(OryzasativaL.subsp.japonicaKitaake)和原种水稻Kitaake为材料,研究了不同基因型水稻叶片中的C4光合微循环及其功能。通过测定与光合C4途径有关的关键酶,如磷酸烯醇式丙酮酸羧化酶(PEPC)、NADP -苹果酸酶(NADP -ME)、NADP -苹果酸脱氢酶(NADP -MDH)和丙酮酸磷酸双激酶(PPDK),说明原种水稻叶片中具有完整的C4光合酶体系;用外源OAA或MA饲喂叶切片或叶绿体后明显增加光合速率,证明原种水稻中具有一个有限的光合C4微循环。将玉米的PEPC基因导入原种水稻后,可大幅度提高光合C4微循环的速率。测定不同基因型的CO2交换速率,看出水稻中C4光合微循环的增强有提高净光合速率(Pn)和降低光呼吸速率/净光合速率(Pr/Pn)比值的作用。叶绿素荧光特性分析表明,C4光合微循环的增强伴随着PSⅡ电子传递效率(Fv/Fm)和光化学猝灭(qP)的增加以及非光化学猝灭(qN)的降低;这些结果为通过基因工程手段提高作物光合效率的遗传育种提供了科学根据。  相似文献   

7.
启动子是控制基因转录的重要元件,也是合成生物学研究和细胞工厂设计的关键环节。糖酵解途径和三羧酸循环是糖类分解代谢的中心代谢,受到包括启动子强度在内的严格调控。为了筛选一系列能满足合成生物学研究和细胞工厂设计需要的不同强度的内源性组成型启动子,利用报告基因——红色荧光蛋白m Cherry和在线分析软件,系统研究了大肠杆菌糖酵解和三羧酸循环中27个启动子的强度和核心结构元件。结果表明:这些启动子的强度范围变化很大,最强启动子Pgap A的强度是最弱启动子Pacn A强度的43. 6倍;启动子的-10序列和-35序列与它们的一致序列也不完全相同,两者之间的距离为17±3bp;但是,启动子的强度和启动子的结构特征基本一致。应用最强启动子Pgap A在重组大肠杆菌DH5αΔpck中分别表达磷酸烯醇式丙酮酸羧化酶基因和丙酮酸激酶基因,它们的酶活性分别提高了0. 32和1. 57倍,柠檬酸产量也提高了124. 7%和75. 5%。这些不同强度的启动子为大肠杆菌的合成生物学研究和细胞工厂设计奠定了一定的基础。  相似文献   

8.
Summary Previous results from this laboratory have demonstrated the presence of genes for phosphoenolpyruvate carboxylase and pyruvate, orthophosphate dikinase in C3 plants. The structure and light-enhanced expression of these genes is very similar to that of the genes found in the C4 plant, maize. In order to investigate whether or not the regulation of these genes is similar in C3 and C4 plants, we have constructed chimeric genes using -glucuronidase as a reporter gene under the control of the maize promoters of the genes for phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and the small subunit of ribulose bisphosphate carboxylase (RuBisCO). The chimeric genes were introduced into tobacco, a C3 plant. These genes were expressed primarily in leaf and stem tissue and the expression was enhanced by light. Thus, as in C4 plants, the genes are expressed in a tissue-specific and light-inducible manner in the C3 plant. Since the expression of these genes is restricted to specific cells in leaf tissue of C4 plants, we also investigated the spatial pattern of expression of the chimeric genes using histochemical analysis of -glucuronidase activity. High level expression of all of these genes was found in mesophyll cells. This included the small subunit of RuBisCO, which is not expressed in mesophyll cells but in bundle sheath cells in C4 plants. This report describes similarities between C3 and C4 plants in regulating the expression of these genes.  相似文献   

9.
10.
Recent findings suggest that inhibition of AMP-deaminase (AMPD) could be effective therapeutic strategy in heart disease associated with cardiac ischemia. To establish experimental model to study protective mechanisms of AMPD inhibition we developed conditional, cardiac specific knock-outs in Cre recombinase system. AMPD3 floxed mice were crossed with Mer-Cre-Mer mice. Tamoxifen was injected to induce Cre recombinase. After two weeks, hearts, skeletal muscle, liver, kidney, and blood were collected and activities of AMPD and related enzymes were analyzed using HPLC-based procedure. We demonstrate loss of more than 90% of cardiac AMPD activity in the heart of AMPD3 -/- mice while other enzymes of nucleotide metabolism such as adenosine deaminase, purine nucleoside phosphorylase were not affected. Surprisingly, activity of AMPD was also reduced in the erythrocytes and in the kidney by 20%–30%. No change of AMPD activity was observed in the skeletal muscle and the liver.  相似文献   

11.
Abstract: The effects of 3-nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase, on cerebral metabolism were investigated in mice by NMR spectroscopy. 3-NPA, 180 mg/kg, caused a dramatic buildup of succinate. Succinate was labeled 5.5 times better from [1-13C]glucose than from [2-13C]acetate, showing a predominantly neuronal accumulation. [1-13C]Glucose labeled GABA in the C-2 position only, compatible with inhibition of the tricarboxylic acid (TCA) cycle associated with GABA formation, at the level of succinate dehydrogenase. Aspartate was not labeled by [1-13C]glucose in 3-NPA-intoxicated animals. In contrast, [1-13C]glucose labeled glutamate in the C-2, C-3, and C-4 positions showing uninhibited cycling of label in the TCA cycle associated with the large, neuronal pool of glutamate. The labeling of glutamine, and hence GABA, from [2-13C]acetate showed that the TCA cycle of glial cells was unaffected by 3-NPA and that transfer of glutamine from glia to neurons took place during 3-NPA intoxication. The high 13C enrichment of the C-2 position of glutamine from [1-13C]glucose showed that pyruvate carboxylation was active in glia during 3-NPA intoxication. These findings suggest that 3-NPA in the initial phase of intoxication fairly selectively inhibited the TCA cycle of GABAergic neurons; whereas the TCA cycle of glia remained uninhibited as did the TCA cycle associated with the large neuronal pool of glutamate, which includes glutamatergic neurons. This may help explain why the caudoputamen, which is especially rich in GABAergic neurons, selectively undergoes degeneration both in humans and animals intoxicated with 3-NPA. Further, the present results may be of relevance for the study of basal ganglia disorders such as Huntington's disease.  相似文献   

12.
Eva Melzer  Marion H. O'Leary 《Planta》1991,185(3):368-371
In a previous study (Melzer and O'Leary, 1987, Plant Physiol. 84, 58–60), we used isotopic methods to show that a substantial fraction of protein-bound aspartic acid in tobacco is derived from anaplerotic synthesis via phosphoenolpyruvate (PEP) carboxylase. Similar studies in soybean (Glycine max L.) and spinach (Spinacia oleracea L.) showed a similar pattern, and this pattern persists with age because of slow protein turnover. A more quantitative analysis indicates that about 40% of protein-bound aspartate is derived in this manner. Analyses of free aspartic and malic acids show that contribution of PEP carboxylase to the synthesis of these acids decreases with increasing age. The C4 plant Zea mays L. did not show this pattern.Abbreviations and Symbols RuBP ribulose bisphosphate - PEP phosphoenolpyruvate - OAA oxaloacetic acid - PGA 3-phosphoglyceric acid - 13C carbon-13 - isotopic content [R(sample)/R(standard)-1] × 1000, where R = [13CO2]/[12CO2] This work was supported by contract DE-ACO2-83ER 13076 and grant DE-FGO2-86ER13534 from the U.S. Department of Energy. E. M. was supported by a fellowship from Deutsche Forschungsgemeinschaft. We are grateful to Isabel Treichel for assistance with isotopic analyses.  相似文献   

13.
Phosphoenolpyruvate carboxylase (PEPC) has a variety of functions in plants, including a major anaplerotic role in replenishing the tricarboxylic acid cycle with intermediates to meet the demand of carbon skeletons for synthesis of organic acids and amino acids. Various transgenic C3 plants that overproduce PEPC have been produced and analyzed in detail. The results indicate that foreign PEPC is under the control of the regulatory mechanisms intrinsic to the host plant and down-regulated so as not to cause detrimental metabolic effects, although the anaplerotic reaction is slightly enhanced by the foreign PEPC. By use of foreign PEPCs that can avert such regulation, metabolic flow is largely directed toward synthesis of organic acids and amino acids. Observations with transgenic C3 plants also shed light on the interrelation among various metabolic pathways inside the cell.  相似文献   

14.
15.
Irradiation of buoyant, gas-vacuolate cells of the cyanobacteriumMicrocystis aeruginosa by 5·104 Wm–2 of blue light for 1 h caused a 5% loss of extractable ribulose bisphosphate carboxylase activity compared to dark and red-light controls. Ribulose bisphosphate carboxylase activity was unaffected by blue light in similar experiments conducted with cells containing collapsed gas vacuoles.Abbreviations RuBP Ribulose 1,5-bis-phosphate carboxylase  相似文献   

16.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

17.
SYNOPSIS. Tetrahymena grown overnight in deep cultures were incubated for 1 hr with [1-14C]labeled substrates in the presence or absence of 3-mercaptopicolinic acid (3-MPA). 3-MPA inhibited appearance of label in glycogen from bicarbonate, acetate, pentanoate, octanoate, and succinate, but not from glycerol or glucose. In vitro assays of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase activity showed that both enzymes were about equally distributed between the particulate and cytosol fractions. 3-MPA inhibited phosphoenolpyruvate carboxykinase from both the cytoplasmic and particulate fractions, but had no effect on phosphoenolpyruvate carboxylase from either location. These results suggest that the in vivo effects of this drug are due to inhibition of glyconeogenesis at this site.  相似文献   

18.
C3植物中C4途径的研究进展   总被引:1,自引:0,他引:1  
综述了C3植物中C4途径的发现及研究现状;阐述了C3植物中C4途径的几种作用机理;根据C3植物中C4途径的存在,探讨了改造C3植物的遗传特性;并展望了这一领域的研究前景。  相似文献   

19.
Activity of ribulose 1,5-bisphosphate (RuBP) carboxylase in leaf extracts of the constitutive Crassulacean acid metabolism (CAM) plant Kalanchoe pinnata (Lam.) Pers. decreased with increasing leaf age, whereas the activity of phosphoenolpyruvate (PEP) carboxylase increased. Changes in enzyme activities were associated with changes in the amount of enzyme proteins as determined by immunochemical analysis, sucrose density gradient centrifugation, and SDS gel electrophoresis of leaf extracts. Young developing leaves of plants which received high amounts of NO 3 - during growth contained about 30% of the total soluble protein in the form of RuBP carboxylase; this value declined to about 17% in mature leaves. The level of PEP carboxylase in young leaves of plants at high NO 3 - was an estimated 1% of the total soluble protein and increased to approximately 10% in mature leaves, which showed maximum capacity for dark CO2 fixation. The growth of plants at low levels of NO 3 - decreased the content of soluble protein per unit leaf area as well as the extractable activity and the percentage contribution of both RUBP carboxylase and PEP carboxylase to total soluble leaf protein. There was no definite change in the ratio of RuBP carboxylase to PEP carboxylase activity with a varying supply of NO 3 - during growth. It has been suggested (e.g., Planta 144, 143–151, 1978) that a rhythmic pattern of synthesis and degradation of PEP carboxylase protein is involved in the regulation of -carboxylation during a day/night cycle in CAM. No such changes in the quantity of PEP carboxylase protein were observed in the leaves of Kalanchoe pinnata (Lam.) Pers. or in the leaves of the inducible CAM plant Mesembryanthemum crystallinum L.Abbreviations CAM Crassulacean acid metabolism - RuBP ribulose 1,5-bisphosphate - PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate  相似文献   

20.
In this report, the effects of light on the activity and allosteric properties of phosphoenolpyruvate (PEP) carboxylase were examined in newly matured leaves of several C3 and C4 species. Illumination of previously darkened leaves increased the enzyme activity 1.1 to 1.3 fold in C3 species and 1.4 to 2.3 fold in C4 species, when assayed under suboptimal conditions (pH 7) without allosteric effectors. The sensitivities of PEP carboxylase to the allosteric effectors malate and glucose-6-phosphate were markedly different between C3 and C4 species. In the presence of 5 mM malate, the activity of the enzyme extracted from illuminated leaves was 3 to 10 fold higher than that from darkened leaves in C4 species due to reduced malate inhibition of the enzyme from illuminated leaves, whereas it increased only slightly in C3 species. The Ki(malate) for the enzyme increased about 3 fold by illumination in C4 species, but increased only slightly in C3 species. Also, the addition of the positive effector glucose-6-phosphate provided much greater protection against malate inhibition of the enzyme from C4 species than C3 species. Feeding nitrate to excised leaves of nitrogen deficient plants enhanced the degree of light activation of PEP carboxylase in the C4 species maize, but had little or no effect in the C3 species wheat. These results suggest that post-translational modification by light affects the activity and allosteric properties of PEP carboxylase to a much greater extend in C4 than in C3 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号