首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
野生花生种质的SSR遗传多样性   总被引:7,自引:0,他引:7  
以花生属(Arachis)6个区组24种(包括栽培种)84份种质为材料,用SSR技术对其亲缘关系和遗传多样性进行了分析.从206对SSR引物中筛选到59对能扩增出稳定的多态性条带的引物,这些引物能在花生属基因组DNA中扩增出1~6个DNA片段.结果表明,84份种质的遗传距离为0.04~0.93,平均为0.64,其中匍匐区组的A.appressipila的2份种质(G4与G5)的遗传距离最小(0.04),匍匐区组的A.rigonii(G14)与根茎区组的A.glabrata(G28)的遗传距离最大(0.93).聚类分析结果与花生属的区组分类基本一致,栽培种花生被聚在花生区组中,而且7份栽培种被聚在同一亚亚组中,相同植物学类犁(相当于变种)的材料均被分别聚在一起.异形花区组与直立区组的亲缘关系最近,与花生区组的亲缘关系较近的是匍匐区组.花牛区组的二倍体野生种A.villosa、A.duranensis和A.benensis与栽培种化生关系较近,可以作为桥梁物种来转移其他野生花生的优良基因.  相似文献   

2.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase. The topology of the trees for both fatty acid desaturases displayed two clusters; one cluster with A genome diploid species and the other with B genome diploid species. The two homeologous genes obtained for each of the two fatty acid desaturases from the tetraploid species A. hypogaea and A. monticola were separated into the A and B genome clusters, respectively. The gene phylogenetic trees showed that A. hypogaea is more closely related to the diploid species A. duranensis and A. ipaensis than to the wild tetraploid species A. monticola, suggesting that A. monticola is not a progenitor of the cultivated peanut. In addition, for the stearoyl-ACP desaturase, the A. duranensis sequence was identical with one of the sequences of A. hypogaea and the A. ipaensis sequence was identical with the other. These results support the hypothesis that A. duranensis and A. ipaensis are the most likely diploid progenitors of the cultivated tetraploid A. hypogaea.  相似文献   

3.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid of recent origin, with an AABB genome and low genetic diversity. Perhaps because of its limited genetic diversity, this species lacks resistance to a number of important pests and diseases. In contrast, wild species of Arachis are genetically diverse and are rich sources of disease resistance genes. Consequently, a study of wild peanut relatives is attractive from two points of view: to help understand peanut genetics and to characterize wild alleles that could confer disease resistance. With this in mind, a diploid population from a cross between two wild peanut relatives was developed, in order to make a dense genetic map that could serve as a reference for peanut genetics and in order to characterize the regions of the Arachis genome that code for disease resistance. We tested two methods for developing and genotyping single nucleotide polymorphisms in candidate genes for disease resistance; one is based on single-base primer extension methods and the other is based on amplification refractory mutation system-polymerase chain reaction. We found single-base pair extension to be an efficient method, suitable for high-throughput, single-nucleotide polymorphism mapping; it allowed us to locate five candidate genes for resistance on our genetic map.  相似文献   

4.
The cultivated peanut, Arachis hypogaea (AABB, 2n = 40), is an allotetraploid which was probably originated from a hybridization event between 2 ancestors, A. duranensis (A genome) and A. ipaensis (B genome) followed by chromosome doubling. The wild species in the Arachis section are useful genetic resources for genes that confer biotic and abiotic stress resistance for peanut breeding. However, the resource is not well exploited because little information on the genetic, cytogenetic, and phylogenetic relationships between cultivated peanut and its wild relatives is known. Characterization of its chromosome components will benefit the understanding of these issues. But the paucity of information on the DNA sequence and the presence of morphologically similar chromosomes impede the construction of a detailed karyotype for peanut chromosome identification. In our study, a peanut Cot-1 library was constructed to isolate highly and moderately repetitive sequences from the cultivated peanut, and the chromosomal distributions of these repeats were investigated. Both genome and chromosome specific markers were identified that allowed the distinguishing of A and B genomes in tetraploid peanut and a possible karyotyping of peanut chromosomes by FISH. In particular, a 115-bp tandem repetitive sequence was identified to be a possible centromere repetitive DNA, mainly localized in the centromeres of B chromosomes, and a partial retrotransposable element was also identified in the centromeres of B chromosomes. The cloning and characterization of various chromosomal markers is a major step for FISH-based karyotyping of peanut. The FISH markers are expected to provide a reference tool for sequence assembly, phylogenetic studies of peanut and its wild species, and breeding.  相似文献   

5.
Cultivated peanut is an allotetraploid (genome type AABB) with a very narrow genetic base, therefore wild species are an attractive source of new variability and traits. Because most wild species are diploid, the first step of introgression usually involves hybridization of wild species and polyploidization to produce a synthetic allotetraploid (AABB) that is sexually compatible with peanut. This study investigates drought-related traits such as leaf morphology, transpiration profile, chlorophyll meter readings (SCMR), specific leaf area (SLA) and transpiration rate per leaf area for two wild diploids (Arachis duranensis and Arachis ipaënsis) that could be of interest for improvement of the peanut crop. Furthermore, the inheritance of the traits from the diploid to the tetraploid state was investigated. Results showed that whilst some diploid traits such as SCMR, are maintained through hybridization and polyploidization, most characters, such as the leaf area, stomata size, trichome density and transpiration profile, are substantially modified. The study concludes that direct evaluations of drought-related traits in wild diploids may be useful for evaluation of wild species to be used in introgression. However, evaluations on wild-derived synthetic tetraploids are likely to be more informative.  相似文献   

6.
Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.  相似文献   

7.
Oryza L. (Poaceae) contains approximately 20 wild and two domesticated species and nine genomes. Major disagreements exist on its systematics and genome evolution. Sequence polymorphism in the gene that encodes the 10-kDa prolamin polypeptide (a seed storage protein) was used to determine phylogenetic relationships and evaluate current systematics for 19 Oryza species. This gene in Oryza is approximately 402-bp long, and includes a 72-bp signal peptide region. A strict consensus tree shows Oryza brachyantha (FF) as the most basal species, followed by a polytomy of three clades that can be delineated based on genome composition: (1) the GG clade: Oryza granulata and Oryza meyeriana, (2) the EE clade: Oryza australiensis, and (3) the ABCD clade: the remaining Oryza species. Two subclades within the ABCD clade emerge, one containing species with the AA genome, the other with components of the BC and D genomes. Members of the AA subclade form a polytomy and were delineated by a single 3-base deletion. The African species Oryza punctata (BB) and the South American-endemic CCDD genome species form a strong lineage, pointing to a close genetic affinity of O. punctata to the missing DD genome donor. The strong association between the CC and BBCC species implies convergence at the gene level. The study supports the following sectional units of Oryza: Section Oryza (Series sativae and officinaliae), Section australiensis, Section Granulata, Section Brachyantha.  相似文献   

8.
The karyotype structure of Arachis trinitensis was studied by conventional Feulgen staining, CMA/DAPI banding and rDNA loci detection by fluorescence in situ hybridization (FISH) in order to establish its genome status and test the hypothesis that this species is a genome donor of cultivated peanut. Conventional staining revealed that the karyotype lacked the small "A chromosomes" characteristic of the A genome. In agreement with this, chromosomal banding showed that none of the chromosomes had the large centromeric bands expected for A chromosomes. FISH revealed one pair each of 5S and 45S rDNA loci, located in different medium-sized metacentric chromosomes. Collectively, these results suggest that A. trinitensis should be removed from the A genome and be considered as a B or non-A genome species. The pattern of heterochromatic bands and rDNA loci of A. trinitensis differ markedly from any of the complements of A. hypogaea, suggesting that the former species is unlikely to be one of the wild diploid progenitors of the latter.  相似文献   

9.
10.
The analysis of constituents of protein subunits by protein SDS-PAGE technique in 11 sp ecies of Genus Arachis including 4 types of culti-species and 7 wild species showed that the band patterns may be divided into three sections, i.e. PⅠ, PⅡ and PⅢ presenting 5, 13 and 16 subunits respectively. The subunit number of diploid species was less than that of tetraploid species in general, but the difference of intraspecies or interspecies was mainly located in sections PⅡ and PⅢ. According to the indices of similarity of protein subunits, the relationship among four types (Virginia, Peruvian, Valencia and Spanish) of tetraploid culti-species (Arachis hypogaea) seemed mostly close to each other and A. monticola, the tetraploid wild species was related to one of them. Among four diploid wild species in Arachis section, A. cardenasii and A. batizocai were rather closer than ,A. correntina and A. duranesis and both A. villosulicarpa in Extranervosae section and A.pusilla in Triseminalae section were all distant relatives.  相似文献   

11.
K P Singh  S N Raina  A K Singh 《Génome》1996,39(5):890-897
The 2C nuclear DNA amounts were determined for 99 accessions, representing 23 Arachis species from 8 of 9 taxonomic sections, and two synthetic amphidiploids. Mean 2C DNA amounts varied by 15.20%, ranging from 10.26 to 11.82 pg, between accessions of Arachis hypogaea (2n = 4x = 40). Nuclear DNA content variation (5.33-5.91 pg) was also detected among Arachis duranensis (2n = 2x = 20) accessions. The intraspecific variation in the two species may have resulted from indirect selection for favourable genome sizes in particular environmental conditions. The accessions belonging to A. hypogaea ssp. hypogaea (mean value 11.27 pg) with longer life cycle had significantly larger mean DNA content than the accessions of A. hypogaea ssp. fastigiata (mean value 10.97 pg). For 20 diploid (2n = 2x = 20) species of the genus, 2C nuclear DNA amounts ranged from approximately 3 to 7 pg. The diploid perennial species of section Arachis have about 12% more DNA than the annual species. Comparisons of DNA amounts show that evolutionary rating is not a reliable guide to DNA amounts in generic sections of the genus; lower DNA values with evolutionary advancement were found in sections Heteranthae and Triseminatae, but the same was not true for sections Arachis and Caulorrhizae. Similarly, there is evidence of significant differences in DNA content between 4 ancient sections (Procumbentes, Erectoides, Rhizomatosae, and Extranervosae) of the genus. The occurrence of genome size plasticity in both A. duranensis and A. hypogaea provides evidence that A. duranensis could be one of the diploid progenitors of A. hypogaea. The DNA content in the two synthetic amphidiploids corresponded to the sum value estimated for parental species. Key words : Arachis species, genome size, Arachis hypogaea, Arachis duranensis, intraspecific variation.  相似文献   

12.
E M Temsch  J Greilhuber 《Génome》2000,43(3):449-451
Genome size variation within species is a frequently reported, but still a controversial problem. In the present study, we re-evaluated recently published Feulgen densitometric data on genome size and its infraspecific variation in Arachis hypogaea, and also conducted measurements in one accession of its wild relative A. monticola. The methods applied were propidium iodide flow cytometry and Feulgen densitometry using Pisum sativum as an internal standard. The 2C DNA contents previously published cannot be confirmed, but values obtained in this study are about half as large. Additionally, we could not reproduce the previously reported 1.15-fold variation within A. hypogaea; our data indicate genome size stability between respective accessions of this species. Based on 8.84 pg (2C) for Pisum sativum the DNA amounts (2C) were: 5.914 pg in A. hypogaea, and 5.979 pg in A. monticola.  相似文献   

13.
Cultivated peanut, Arachis hypogaea L., is a tetraploid (2n = 4x = 40) species thought to be of allopolyploid origin. Its closest relatives are the diploid (2n = 2x = 20) annual and perennial species included with it in Arachis sect. Arachis. Species in section Arachis represent an important source of novel alleles for improvement of cultivated peanut. A better understanding of the level of speciation and taxonomic relationships between taxa within section Arachis is a prerequisite to the effective use of this secondary gene pool in peanut breeding programs. The AFLP technique was used to determine intra- and interspecific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50. Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, A-genome accessions KG 30029 (Arachis helodes) and KSSc 36009 (Arachis simpsonii) and B-genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both Arachis hypogaea and Arachis monticola. This finding suggests their involvement in the evolution of the tetraploid peanut species.  相似文献   

14.
The 5S and the 18S-25S rRNA genes were physically mapped by fluorescent in situ hybridization (FISH) in all botanical varieties of cultivated peanut Arachis hypogaea (2n = 4x = 40), in the wild tetraploid A. monticola, and in seven wild diploid species considered as putative ancestors of the tetraploids. A detailed karyotype analysis including the FISH signals and the heterochromatic bands was carried out. Molecular cytogenetic landmarks are provided for the construction of a FISH-based karyotype in Arachis species. The size, number, and chromosome position of FISH signals and heterochromatic bands are similar in all A. hypogaea varieties and A. monticola, but vary among the diploid species. Genome constitution of the species is discussed and several chromosome homeologies are established. The bulk of the chromosome markers mapped, together with data on geographical distribution of the taxa, suggest that peanut originated upon domestication of A. monticola and evidence that the diploids A. duranensis and A. ipaensis are the most probable ancestors of both tetraploid species. Allopolyploidy could have arisen by a single event or, if by multiple events, always from the same diploid species.  相似文献   

15.
16.
Seventy-two accessions, representing 22 species from sections Arachis, Erectoides, Extranervosae, and Triseminalae of the genus Arachis, were screened for seed storage protein polymorphism. Variation was detected between sections, between genome types, between species, and in some cases between different accessions of the same species or different seeds of the same accession. Arachis duranensis and one accession of A. cardenasii were found to have identical protein patterns. The greatest dissimilarity was found between species of the section Extranervosae and species of the section Triseminalae. Those of section Erectoides showed much similarity with some species of section Arachis. Protein polymorphism was shown to distinguish the two subspecies of A. hypogaea (fastigiata and hypogaea) in 27 of 28 cases. The seed protein profile of A. monticola was a combination of seed protein profiles from the two A. hypogaea subspecies. The relatedness between the various species was calculated and those that had the greatest similarity with A. hypogaea were A. spegazzinii and A. batizocoi.  相似文献   

17.
18.

Background  

The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.  相似文献   

19.
Section Arachis of the homonymous genus includes 29 wild diploid species and two allotetraploids (A. monticola and the domesticated peanut, A. hypogaea L.). Although, three different genomes (A, B and D) have been proposed for diploid species with = 10, they are still not well characterized. Moreover, neither the relationships among species within each genome group nor between diploids and tetraploids (AABB) are completely resolved. To tackle these issues, particularly within the A genome, in this study the rRNA genes (5S and 18S–26S) and heterochromatic bands were physically mapped using fluorescent in situ hybridization (FISH) in 13 species of Arachis. These molecular cytogenetic landmarks have allowed individual identification of a set of chromosomes and were used to construct detailed FISH-based karyotypes for each species. The bulk of the chromosome markers mapped revealed that, although the A genome species have a common karyotype structure, the species can be arranged in three groups (La Plata River Basin, Chiquitano, and Pantanal) on the basis of the variability observed in the heterochromatin and 18S–26S rRNA loci. Notably, these groups are consistent with the geographical co-distribution of the species. This coincidence is discussed on the basis of the particular reproductive traits of the species such as autogamy and geocarpy. Combined with geographic distribution of the taxa, the cytogenetic data provide evidence that A. duranensis is the most probable A genome ancestor of tetraploid species. It is expected that the groups of diploid species established, and their relation with the cultigen, may aid to rationally select wild species with agronomic traits desirable for peanut breeding programs.  相似文献   

20.
Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号