首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between linkage disequilibrium (LD) and recombination fraction can be used to infer the pattern of genetic variation and evolutionary process in humans and other systems. We described a computational framework to construct a linkage–LD map from commonly used biallelic, single-nucleotide polymorphism (SNP) markers for outcrossing plants by which the decline of LD is visualized with genetic distance. The framework was derived from an open-pollinated (OP) design composed of plants randomly sampled from a natural population and seeds from each sampled plant, enabling simultaneous estimation of the LD in the natural population and recombination fraction due to allelic co-segregation during meiosis. We modified the framework to infer evolutionary pasts of natural populations using those marker types that are segregating in a dominant manner, given their role in creating and maintaining population genetic diversity. A sophisticated two-level EM algorithm was implemented to estimate and retrieve the missing information of segregation characterized by dominant-segregating markers such as single methylation polymorphisms. The model was applied to study the relationship between linkage and LD for a non-model outcrossing species, a gymnosperm species, Torreya grandis, naturally distributed in mountains of the southeastern China. The linkage–LD map constructed from various types of molecular markers opens a powerful gateway for studying the history of plant evolution.  相似文献   

2.
The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill–Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.  相似文献   

3.
Long-range migrations and the resulting admixtures between populations have been important forces shaping human genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER, which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.  相似文献   

4.
The aim of this article is to demonstrate possible recombination‐associated evolutionary forces affecting the genomic distribution of processed pseudogenes. The relationship between recombination rate and the distribution of processed pseudogenes is analysed in the human genome. The results show that processed pseudogenes preferentially accumulate in regions of low recombination rates and this correlation cannot be explained by indirect relationships with GC content and gene density. Several explanatory models for the observation are discussed. A model of selection against ectopic recombination is tested based on the difference in distribution pattern between two classes of processed pseudogenes, which differ in the possibility of stimulating ectopic recombination. Our results indicate that the correlation between processed pseudogene density and recombination rate is probably results, in part, from the selection against ectopic recombination between closely located homologous processed pseudogenes. We also found a length effect in processed pseudogene distribution, namely long processed pseudogenes are located more preferentially in regions of low recombination rates than short ones.  相似文献   

5.
    
Although it is well established theoretically that selective interference among mutations (Hill–Robertson interference) favours meiotic recombination, genomewide mean rates of mutation and strengths of selection appear too low to support this as the mechanism favouring recombination in nature. A possible solution to this discrepancy between theory and observation is that selection is at least intermittently very strong due to the antagonistic coevolution between a host and its parasites. The Red Queen theory posits that such coevolution generates fitness epistasis among loci, which generates negative linkage disequilibrium among beneficial mutations, which in turn favours recombination. This theory has received only limited support. However, Red Queen dynamics without epistasis may provide the ecological conditions that maintain strong and frequent selective interference in finite populations that indirectly selects for recombination. This hypothesis is developed here through the simulation of Red Queen dynamics. This approach required the development of a method to calculate the exact frequencies of multilocus haplotypes after recombination. Simulations show that recombination is favoured by the moderately weak selection of many loci involved in the interaction between a host and its parasites, which results in substitution rates that are compatible with empirical estimates. The model also reproduces the previously reported rapid increase in the rate of outcrossing in Caenorhabditis elegans coevolving with a bacterial pathogen.  相似文献   

6.
D Gianola  S Qanbari  H Simianer 《Heredity》2013,111(4):275-285
The analysis of systems involving many loci is important in population and quantitativegenetics. An important problem is the study of linkage disequilibrium (LD), a conceptrelevant in genome-enabled prediction of quantitative traits and in exploration ofmarker–phenotype associations. This article introduces a new estimator of a LDparameter (ρ2) that is much easier to compute than a maximumlikelihood (or Bayesian) estimate of a tetra-choric correlation. We examined theconjecture that the sampling distribution of the estimator of ρ2could be less frequency dependent than that of the estimator ofr2, a widely used metric for assessing LD. This was donevia an empirical evaluation of LD in 806 Holstein–Friesian cattle using 771single-nucleotide polymorphism (SNP) markers and of HapMap III data on 21 991 SNPs(chromosome 3) observed in 88 unrelated individuals from Tuscany. Also, 1600 haplotypesover a region of 1 Mb simulated under the coalescent were used to estimate LD usingthe two measures. Subsequently, a simulation study compared the new estimator with that ofr2 using several scenarios of LD and allelic frequencies.From these studies, it is concluded that ρ2 provides a usefulmetric for the study of LD as the distribution of its estimator is less frequencydependent than that of the standard estimator of r2.  相似文献   

7.
    
We build on previous observations that Hill–Robertson interference generates an advantage of sex that, in structured populations, can be large enough to explain the evolutionary maintenance of costly sex. We employed a gene network model that explicitly incorporates interactions between genes. Mutations in the gene networks have variable effects that depend on the genetic background in which they appear. Consequently, our simulations include two costs of sex—recombination and migration loads—that were missing from previous studies of the evolution of costly sex. Our results suggest a critical role for population structure that lies in its ability to align the long‐ and short‐term advantages of sex. We show that the addition of population structure favored the evolution of sex by disproportionately decreasing the equilibrium mean fitness of asexual populations, primarily by increasing the strength of Muller's Ratchet. Population structure also increased the ability of the short‐term advantage of sex to counter the primary limit to the evolution of sex in the gene network model—recombination load. On the other hand, highly structured populations experienced migration load in the form of Dobzhansky–Muller incompatibilities, decreasing the effective rate of migration between demes and, consequently, accelerating the accumulation of drift load in the sexual populations.  相似文献   

8.
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.  相似文献   

9.
Alan R. Rogers 《Genetics》2014,197(4):1329-1341
The “LD curve” relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of σd2, which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth.  相似文献   

10.
    
Natural selection is known to favor specific gene combinations, thereby shaping the evolution of recombination rates, often through epistatic interactions. However, the dynamics of these interacting factors within natural populations remain poorly understood. In this study, we investigate the long-term maintenance of a complex polymorphism involving linked, nonoverlapping chromosomal inversions in a natural population of Drosophila mediopunctata. Remarkably, even after 30 years—equivalent to roughly 340 generations—two major features have remained unexpectedly stable: the linkage disequilibrium (LD) between inversions, which deviates significantly from the theoretical prediction of decay, and a consistent seasonal cycle pattern of heterozygous excess and homozygous deficiencies. We explored the roles of recombination suppression, epistatic selection, and overdominance in maintaining this stability, examining their alignment with previously described patterns. Our findings reveal that moderate selection coefficients, such as s = 0.0407, are sufficient to maintain the observed LD for the most common haplotypes, albeit leading to an unstable equilibrium. Simulations further reveal that the introduction of overdominance stabilizes the system, enabling the long-term persistence of this complex inversion polymorphism across various frequency scenarios. The stability of this system appears to hinge on a delicate balance between LD, recombination rates, and selective pressures, with overdominance playing a critical role. Our findings highlight the significance of epistatic interactions and selective pressures in shaping evolutionary pathways in natural populations and offer a compelling example of natural selection acting on a complex inversion polymorphism, providing valuable insights into the evolutionary dynamics governing inversion systems.  相似文献   

11.
Admixture mapping is a statistical methodology that detects genetic variants in recently admixed populations that are responsible for ethnic differences in disease risk. Three software packages are now available for admixture mapping and we provide a brief overview of the statistical methods and other principal features they implement.  相似文献   

12.
    
Neandertal DNA makes up 2–3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.  相似文献   

13.
Social heterosis is when individuals in groups or neighbourhoods receive a mutualistic benefit from across‐individual genetic diversity. Although it can be a viable evolutionary mechanism to maintain allelic diversity at a given locus, its efficacy at maintaining genome‐wide diversity is in question when multiple loci are being simultaneously selected. Therefore, we modelled social heterosis in a population of haploid genomes of two‐ or three‐linked loci. With such linkages, social heterosis decreases gametic diversity, but maintains allelic diversity. Genomes tend to survive as complimentary pairs, with alternate alleles at each locus (e.g. the pair AbC and aBc). The outcomes of selection appear similar to fitness epistasis but are novel in the sense that phenotypic interactions occur across rather than within individuals. The model’s results strongly suggest that strong linkage across gene loci actually increases the probability that social heterosis maintains significant genetic diversity at the level of the genome.  相似文献   

14.
    
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

15.
Statistical methods in genetics   总被引:1,自引:0,他引:1  
In recent years, a very large variety of statistical methodologies, at various levels of complexity, have been put forward to analyse genotype data and detect genetic variations that may be responsible for increasing the susceptibility to disease. This review provides a concise account of a number of selected statistical methods for population-based association mapping, from single-marker tests of association to multi-marker data mining techniques for gene-gene interaction detection.  相似文献   

16.
D Haig 《Heredity》2014,113(2):96-103
Common misconceptions of the ‘parental conflict'' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother–offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting.  相似文献   

17.
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNATyr. The incompatible mitochondrial–nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.  相似文献   

18.
Through the theoretical analysis of the admixture linkage disequilibrium (ALD) in the gradual admixture (GA) model, in which admixture occurs in every generation, the ALD is found to be proportional to the difference in marker allele frequencies, p1-p2, between two subpopulations. Based on this property, we can employ a strict monotonic function (Δker=Δ/(p1-p2), where Δ denotes the linkage disequilibrium (LD)) of the recombination fraction between the marker locus and the disease locus to infer the true genetic linkage. We construct a quasi likelihood ratio test (LRT) for the case-only data utilizing the information of unlinked markers in the human genome. The simulation results show that our tests can be used to fine map a disease locus. The effects of parameter values in the ALD mapping are also discussed.  相似文献   

19.
郭伟  冯荣锦 《遗传学报》2006,33(1):12-18
在渐近混合模型中,混合现象发生在每一世代,通过对其混合连锁不平衡的理论分析,发现混合连锁不平衡与两个子群体间的基因频率差成正比。基于这一点,构造了一个对重组率严格单调的函数(△ker=△/(p1-p2),其中△代表连锁不平衡),进而据此推断标记基因座与疾病基因座的遗传连锁。应用人类基因组上不连锁的标记基因提供的连锁不平衡信息,基于病人组数据构造了一个准似然比统计量。模拟结果显示,此检验可用于精确的基因定位。文章亦讨论了参数对检验的影响。  相似文献   

20.
Substantial increases of linkage disequilibrium (LD) both in magnitude and in range have been observed in recently admixed populations such as African-American (AfA). On the other hand, it has also been shown that LD in AfAs was very similar to that of African. In this study, we attempted to resolve these contradicting observations by conducting a systematic examination of the LD structure in AfAs by genotyping a sample of AfA individuals at 24,341 single nucleotide polymorphisms (SNPs) spanning almost the entire chromosome 21, with an average density of 1.5 kb/SNP. The overall LD in AfAs is similar to that in African populations and much less than that in European populations. Even when the ancestry-informative markers (AIMs) were used, extended LD in AfA was found to be limited to certain magnitude range (0.2 < or = r(2) < or = 0.8) and certain distance range, that is, between-marker distance more than 200 kb. Furthermore, the inclusion of AfA individuals with predominant African ancestry was found to reduce the overall magnitude of LD. Elevation of LD in the AfA population, compared with its parental populations, can only be observed at the markers with large allele frequency differences between 2 parental populations at limited scenario. AfA individuals of wholly African ancestry contribute little to the extended LD in the AfA population, and further genotyping or association analysis conducted using only admixed individuals may lead to higher statistical power and possibly reduced cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号