首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite increasing claims of pre-Cretaceous angiosperms, whether there really are angiosperms in the Jurassic is apparently still an open question for many people before further evidence is available. This question can only be answered by studying more Jurassic plant fossils. Here we report a fossil angiosperm, Yuhania daohugouensis gen. et sp. nov, from the Middle Jurassic of Inner Mongolia, China. The plant includes connected stem, leaves, flowers, aggregate fruits, fruitlets, and seeds within fruitlets. The leaves are helically arranged along the curving stem, linear in shape, with 5–6 parallel veins. The aggregate fruit is pedicellate, composed of over 20 carpels/fruitlets helically arranged. Each fruitlet encloses a seed. The reproductive organs in various stages are found in the same plant, allowing us to understand the development of Yuhania. The occurrence of Yuhania in the Middle Jurassic re-confirms the Jurassic history for angiosperms that has been suggested by other independent research and adds to the on-going study on the early evolution of angiosperms.  相似文献   

2.
Rosaceae. consisting of about 126 genera and 3200 species, is widely distributed in warm temperate and subtropical regions of the Northern Hemisphere, while more than half of the genera are Asiatic and more then 80% of the total number of Asiatic occur in China (Table 1). In this paper, the origin and evolution of Chinese genera is discussed mainly. The principal tendency of the whole family is also described from the point of view of evolution. First of all, the systematic position of Rosaceae in Angiospermae is reviewed. According to the records of paleobotany, rosaceous plants occurred first in the Tertiary, from the early period of Eocene (genera such as Spiraea and Prunus) to the late period of Miocene (e.g. Crataegus, Malus amd Rosa). They have quite a long history in geological data. Where has this big and old family originated and what steps does it stand in the long course of evolution of flowering plants? There are several opinions and explanations by different authors. In this paper, a general survey of the six prevailing classical systems (Table 2) is made to give a brief idea of the position of this family in the Angiospermae and of the relationships between the subfamilies and also the relationships between different genera in each subfamily. At the end of this paper, an attempt is made to analyse and sum up the major evolutionary tendency of the whole family. As generally condidered, Rosaceae originated from Magnoliales, and woody plants of the family still hold a dominant position. For instance, subfamily Spiraeoideae consists of only one herbaceous genus (i.e., Aruncus) and subfamily Rosoideae only a few herbaceous genera. All of these herbaceous genera are derived from the closely related woody genera of the same subfamily. In the course of evolution of Angiospermae, Rosaceae stands at the initial to the middle stages of development. All parts of plant body in this family are at the chang ing and developing stages, with carpels, fruits and inflorescences being the most active. The primitive types in this family, such as the members of subfamily Spiraeoideae, usually have 5 and free carpels, the number of which are either reduced to 2-1 or increased to 10-numerous. They have different levels of union and are either completely free from each other or coherent at base. The carpels usually occur on the upper part of the receptacle, because the shapes of receptacle are variable, sometimes disk-shaped, cupshaped, tube-shaped or even bottle-shaped. In the last case carpels grow inside the receptacle. Thus the position of carpels has changed from superior to inferior through halfsuperior. In accordance with the development of the carpels, various kinds of fruits are produced. The primitive types of fruit are follicles, with dry, dehiscent carpels opened along different sutures. The next step, the carpels have developed into an indehiscent, I-celled and l-seeded fruit, the so-caned achene. In different genera, the achenes have different coat types and appendages to facilitate dispersing the seeds. Some of the achenes grow upon the fleshy receptacle (like strawberry) and some of them inside the fleshy receptacle (like rose). Sometimes a few carpels are united with the receptacle and develop into a pome (like apple and pear). Another direction of the fruit development is the single carpel with fleshy exocarp and mesocarp, and a bony endocarp, then becoming a drupe (like peach and plum). In addition to fleshy receptacle of thickened fruit coats, they usually have showy colour, fragrant smell and also plenty of sugars, acids, vitamins, etc. which are edible and attract animals and human beings to assist the dispersion of seeds. In this family, there are various types of flower arrangements, both indefinite inflorescences including raceme, umbel, corymb and panicle, and the definite inflorescence, such as solitary flower, cyme and compound cyme. In the evolution course, they tend to change mostly from multiflowered compound inflorescence towards few-flowered simple inflorescence, and finally becoming a solitary flower: simultaneously with the decreasing of number of flowers on the inflorescence, the increasing of size of petals, which become very showy for attraction of insects so as to guarantee pollination and fertilization of the plants concerned. Another tendency, if the bisexual flowers change to unisexual, either monoecious- or dioecious-polygamous, then they form a dense spike which is beneficial to cross pollination. The abundance, diversity, and wide range of distribution of the species and genera of Rosaceae are considered mainly resulted from their highly developed reproductive organs.  相似文献   

3.
? Premise of the study: Apocarpous plants possess carpels that are separated in the gynoecium. Extragynoecial compita, commonly occurring in basal angiosperms, have been proposed to have the potential to increase offspring quantity in apocarpous species through the intercarpellary growth of pollen tubes. To date, the impact of an extragynoecial compitum on fruit or seed set has not been studied in any species. This study investigated the pollen tube pathway between adjacent carpels and its contribution to fruit set in Schisandra sphenanthera. ? Methods: We investigated the fruit set ratio in the field and collected hundreds of gynoecia at their full flowering stage. Pollinated carpel ratio and pollen tube pathway observations were performed using fluorescence optics. ? Key results: Pollen grains germinated and tubes extended along the pseudostyle surface. Some of them turned and entered the ovules at the end of the stigmatic crest, whereas others subsequently grew into neighboring carpels through promontory connections located at the base of the unfused carpels. No tubes were found growing on the surface of the receptacle. More than 24 carpels could be fertilized by pollen tubes from one carpel through hand pollination. The pollinated carpel ratio was significantly lower than the fruit set ratio under natural conditions. ? Conclusions: Pollen tubes from one carpel can easily cross in the extragynoecial compitum between the adjacent carpels of S. sphenanthera, and this intercarpellary growth of pollen tubes can significantly increase the fruit set of apocarpous species, at least in S. sphenanthera.  相似文献   

4.
The Earliest Normal Flower from Liaoning Province, China   总被引:1,自引:0,他引:1  
The early evolution of angiosperms has been a focus of intensive research for more than a century. The Yixian Formation in western Liaoning yields one of the earliest angiosperm macrofloras. Despite multitudes of angiosperm fossils uncovered, including Archaefructus and Sinocarpus , no bona fide normal flower has been dated to 125 Ma (mega-annum) or older. Here we report Callianthus dilae gen. et sp. nov. from the Yixian Formation (Early Cretaceous) in western Liaoning, China as the earliest normal flower known to date. The flower demonstrates a typical floral organization, including tepals, androecium, and gynoecium. The tepals are spatulate with parallel veins. The stamens have a slender filament, a globular anther, bristles at the anther apex, and in situ round-triangular pollen grains. The gynoecium is composed of two stylate carpels enclosed in a fleshy envelope, and develops into a "hip" when mature. Since the well-accepted history of angiosperms is not much longer than 125 Ma, Callianthus together with Chaoyangia, Archaefructus and Sinocarpus from the Yixian Formation demonstrate a surprisingly high diversity of angiosperms, implying a history of angiosperms much longer than currently accepted.  相似文献   

5.
An assemblage of fossil plants was discovered in the Yanji Basin, Jitin Province, consisting mainly of pterid0Phytes, gymnosperms and a few angiosperms. The present paper deals with the angiosperms only; They are: Rogersia angunifolia, Saliciphyllum longifoliurn, Sapindopsis magnifolia, Sterculophyllurn eleganurn, ,Ficophyllum, "Sassafras", Ranunculophyllum pinnatisectum sp. nov., Clernatites lanceolatus sp. nov., and the fruits Carpolithus brookensis, Carpolithus sp. gymnosperm Sequoia as well, all angiosperms having the morphological features of early angiosperms. Most of them are similar to the elements of the Potomac Group in North America and to some extent approach the fossil plants of Neocomian in Mongolia. This assemblage is manifestly different from the Albian flora of Kolyma River (URSS) and Portugal of Europe because of belonging to different stages. Thus, the age of the Dalazi Formation of Yanji Basin is tentatively ascribed to Aptian. The characteristics of this assemblage indicate that the floras of Eurasia and North America had been closely related during the early Mid-Cretaceous and that the early angiosperms were widely distributed in the North Hemisphere. Judging from the characteristics of this assemblage and the deposition, the authors speculate that in Northeast China the climate was warm and humid during the early Mid-Cretaceous.  相似文献   

6.
五十多年前胡骕在研究山东临朐县山旺组的植物化石中,发现有花的化石,仅保存了5个花瓣或仅5个萼片,均难给予确切的分类位置;六十年代我们两次去山旺野外工作,发现为数较多,同样仅保存花瓣或萼片的化石。本文研究的是80年代发现并保存较为完好的花化石。新近李凤麟详细论述了各门类化石,均认为山旺组的地质时代属中中新世。近十余年来,国际上被子植物的花化石的研究进展较快。每次花化石的发现,对研究被子植物种系发生、系统位置及在地史中的演化及演变速率等均是极重要  相似文献   

7.
An Early Cretaceous angiosperm, Sinocarpus decussatus gen. et sp. nov., is described from the Yixian Formation in Liaoning, China, based on an infructescence fragment. It is probably ebracteate, consisting of one terminal fruit and two pairs of pedicellate lateral fruits arranged decussately. Carpels are probably borne on a small convex receptacle. There are no distinct remnants of a perianth although fragments observed at the base of immature fruits may represent perianth parts. No remnants of androecial parts have been observed, and it is unknown whether the flowers were unisexual or bisexual. The basally syncarpous ovary is superior and composed of 3 or 4 carpels. Each carpel contains about 10 anatropous ovules/seeds borne along the linear placentae. Seeds are flattened and embedded in a thick amorphous material. The character combination of Sinocarpus indicates a systematic position among the basal grade of eudicots or the basal core eudicots, and particularly shows similarities to extant Ranunculaceae, Buxaceae, and Myrothamnaceae, but based on the available data the fossil cannot unambiguously be placed in any modern family.  相似文献   

8.
A new angiosperm fructification, Caloda delevoryana, is described from the Cenomanian age Dakota Formation of central Kansas. It consists of a long, narrow, main axis with numerous secondary axes arranged helically around the main axis. These secondary axes are each terminated in a small receptacle bearing numerous conduplicate carpels. No evidence of a perianth or androecium was found. This fructification bears some similarity to a number of different modern orders, such as the Hamamelidales, Alismatales, Najadales, and Piperales, and families, particularly the Platanaceae and the Aponogetonaceae, but cannot definitely be assigned to any modern taxon within the angiosperms. C. delevoryana exhibits several characters traditionally assumed to be primitive in the angiosperms, and several other features of this fossil are proposed as primitive in the evolution of angiosperms. This floral axis, with its compact mass of numerous secondary axes bearing very small fruits and seeds, may be the product of reduction through diminished growth of internodes and carpels, and elaboration through increased repetition of floral modules. This record adds to the rapidly growing body of paleobotanical data on early angiosperm reproductive structures, which should prove important in the assessment of the extent and direction of angiosperm evolution.  相似文献   

9.
The fossil plants, described in this paper were obtained from the district Lin- Dian Xian of Hei-Long-Jiang Province, which are Cladophlebis sp., Onychiopsis sp., Protophyllum unduIahtm sp. nov., Viburniphyllum serrulatum sp. nov., and Platanophyllum sp. The sporopollen assemblage, represented by 19 genera and 20 species, is characterized by absolute predominance of ferns. Others are some gymnosperm and few angiosperms. The age of this flora is assigned to Aptian-Albian which is compared with that of the Patapsco formation of Potomac group of eastern America and that of the Lower Cretaceous of Kolyma Basin of eastern Siberia. During that time the climate of this region was wet and warm.  相似文献   

10.
Recently discovered fossil flowers from the Cretaceous Cerro del Pueblo and flowers and fruits from the Oligocene Coatzingo Formations are assigned to the Rhamnaceae. The Cretaceous flower, Coahuilanthus belindae Calvillo-Canadell and Cevallos-Ferriz, gen. et sp. nov., is actinomorphic with fused perianth parts forming a slightly campanulate to cupulate floral cup, with sepals slightly keeled and spatulate clawed petals. The Oligocene fossils include Nahinda axamilpensis Calvillo-Canadell and Cevallos-Ferriz, gen. et sp. nov. (characterized by its campanulate bisexual flower with stamens opposite, adnate to and enfolded by petals; and with the ovary ripening into a drupe), and a winged fruit assigned to Ventilago engoto Calvillo-Canadell and Cevallos-Ferriz, sp. nov. The flowers and drupe features indicate closer affinity to Zizipheae and/or Rhamneae, while the single samaroid fruit suggests the presence of Ventilagineae. However, the unique character combination in the fossil flowers precludes placing them in extant genera. Nevertheless, the history of the family is long and can be traced back to the Campanian. A detailed phylogenetic revision of the group that uses morphological characters from both extant and fossil plants is needed to better understand the significance of these records as well as other important fossils of the family.  相似文献   

11.

Premise

Alismataceae, a sub-cosmopolitan family with ca. 17 genera and 113 species, is a large group of aquatic plants. Compression/impressions and bioinclusions of reproductive parts in amber support the documentation of the lineage in low-latitude North America. In Mexico, fossil aquatic plants have been infrequently documented. The new reproductive structures exhibit characteristics of Alismataceae, whose fossil record is mainly documented in the northern hemisphere through of fruits and seeds.

Methods

We described and compared 150 samples of reproductive structures preserved as impressions/compressions from the Oligocene Los Ahuehuetes locality in the state of Puebla, and two bioinclusions from the Miocene amber of Simojovel de Allende in the state of Chiapas, Mexico with extinct and extant taxa. Using a parsimony analysis based on 29 floral characters of 17 extant genera of the Alismataceae, we evaluated the relationship between the fossil material and potential living relatives.

Results

We discovered a new genus Nichima based on a perfect, actinomorphic flower with an expanded receptacle, three persistent sepals with multiple vasculatures, delicate and caducous petals, six stamens, and a gynoecium composed of three to more superior carpels, maturing into achenes. These characteristics resemble flowers of Alismataceae. Nichima represents an extinct member of the family, with two new species described here, Nichima magalloniae L. Hern., Cevallos-Ferriz et Hernández-Damián sp. nov. and Nichima gonzalez-medranoi L. Hern., Cevallos-Ferriz et Hernández-Damián, sp. nov. Their phylogenetic position suggests affinity with a clade that includes Baldiella, Echinodorus, and Alisma.

Conclusions

Reproductive structures from the Cenozoic of Mexico support the identification of a new extinct genus, Nichima, evidencing the extensive history of Alismataceae in North America's low latitudes and suggesting a southern extension of the boreotropical flora.
  相似文献   

12.
13.
Sparganium fushunense Geng is described as new from the Jijuntun Formation (Middle to Late Eocene) of Fushun region in Liaoning Province, China. The preserved fertile branches bear fruiting heads. A morphological comparison of the fruit heads is made between the specimens studied here with those of the living species and other fossil species. The results show that the new species is distinguishable mainly by the shape of the tepals and the size of the fruits. Sparganium fushunense Geng, sp. nov. Head-bearing axis at least 14.5 cm long, about 1.0 mm wide, with longitudinal striae more or less parallel on its surface. Axes with 4~6 lateral fruit heads, interval between heads 0.5~2.0 cm. Fruiting head sessile, globose, about 5 mm in diameter, made up of tightly packed tepals and fruits radiating from a small receptacle. Tepals narrowly obovate, apically rounded, about 1.8 mm long, 0.2~0.7 mm wide. Fruits elliptic, sessile, with smooth surface, 1.16~1.25 mm long, at apex with a beak 1.5~2.0 mm long. Seed elliptic, long axis 0.48~0.75 mm long, short axis 0.23~0.45 mm long. Seed coat cells irregularly polygonal , 4.1~19 vn in diameter, with smaller ones in both the apical and basalparts,the larger ones in the middle part and a papillate process at the apex.  相似文献   

14.
A new monotypic gymnosperm family, Nageiaceae D. Z. Fu, is separated from Podocarpaceae. It is characterized by having multinerved leaves without costae, and primitive shoot-like female reproductive organs (female strobili). The new family contains a single genus consisting of 2 sections, 5 species and is distributed along the western coast of the Pacific, from low coastal mountains of eastern and southern Asia to the Phillipines and Papua New Guinea. The first species in the Nageiaceae was described as an angiosperm, Myrica nagi Thunb. (1784), but it was soon recognized to be a gymnosperm belonging to a new genus, and was renamed as Nageia japonica Gaert. (1788). The generic name, Nageia, however, has seldom been used, and the members of Nageia have generally been treated as an isolated section of Podocarpus in the Podocarpaceae. When revising the Podocarpaceae, De Laubenfels (1969) established a new genus Decussocarpus based on Nageia, but several years later (1987) he revived the old generic name, Nageia. Page ( 1988,1990)considered Nageia to be a valid generic name and redefined it as a natural genus. The distinctive,broadly lanceolate, multinerved leaves (without costae) of Nageia are rather unusual in gymnosperms,only being similar to those of Agathis in the Araucariaceae, their leaves are also similar to each other in anatomy. For example, there are many single vascular bundles arranged parallelly, between which occur sclerenchyma cells in the mesophyll. Apparently,leaves in Nageia are rather similar both externally and internally to paleogymnosperm cordaitean leaves, and sclerenchyma cells found in Nageia might be the remains of straps between veins in cordaitean leaves. In addition to leaf characters, the large and nearly round pith of the young shoot in Nageia appears to be a reminiscent of the large pith in cordaitean stem. The female reproductive organs (female strobili ) in Nageia are shoot-like. The female strobilus has a sterile terminal bud, and several opposite or subopposite sterile scaly bracts on its axis; two opposite megasporophylls are found near the axis apex and both have an anatropous ovule which is almost entirely covered by the megasporophyll; a bract is partly adnate to the lower back of the megasporophyll;mature arillate seeds are 1-2 or occasionally 3 in number; the axis becomes woody when the seeds mature, but in some species (N. wallichiana) the upper part of the axis becomes fleshy (in the shape of a receptacle), in which no distinct boundary was found between the fleshy receptacle and the woody part, and both have the same scaly bracts or traces. Many characters in Nageia are distinctly different from those in Podocarpus. Leaves in the Podocarpaceae have distinct midribs; in Podocarpus, the reproductive organ, which was generally thought to be similar to that in Nageia, has no terminal bud, and its bract is entirely free from the lower back of the megasporophyll, the fleshy receptacle is derived from both the axis and the sterile bracts (except the lowest two), and the female strobilus at the seed stage has a secondary stalk. The multinerved leaf in Nageia can rarely be found in most of the living gymnosperms except in some rather isolated groups, such as Araucariaceae, Ephedraceae,Ginkgoaceae and Welwitschiaceae. Paleobotanical evidence shows that multinerved leaves have been found in all of the geological ages from the Paleozoic to the present, and such a shoot-like female reproductive organ as in Nageia was found in some paleogymnosperms. It is very difficult to determine the systematic positions of these fossil plants because of lacks adequate material of reproductive organs or even lack of complete vegetative organs. The vascular system and leaf characters of gymnosperms are considered to be very conservative, and the fact that the common leaf shape and venation exist in both fossil and living gymnosperms could imply that there exists a multinerved-leaved evolutionary line ( M-line ) in gymnosperms, which could be traced back to the paleogymnosperm cordaitean plants or even older ones with multinerved leaves. The different types of the female strobili (female reproductive organs) of living gymnosperms, regardless of having one or only several seeds without a typical cone or many seeds with a cone, might have been derived from shoot-like or spikelike female reproductive organs possessed by their common ancestor.The fossil eviden ce shows that the typical cone similar to those of living gymnosperms first appeared in the Jurassic, much later than the single-seeded fossil plant without cones. The seed fossil appeared in the late Devonian Period. It is very difficult to infer the relationships among living gymnosperms, which are hardly derived from one another. But an analysis of the strobili, including the axis structure and position, number, morphology and degree of adnation of the phyllomes on them, would be helpful to the study of their phylogeny. It is evident, therefore, that the gymnosperms with leaves having a midrib might also have a rather long evolutionary course,but no transition between the midrib and multinerved patterns of leaf venation has so far been found in both living and fossil plants. Finally, it is noteworthy that the Nageiaceae are distributed along the western coast of the Pacific, where many primitive representatives, both in gymnosperms and angiosperms, still survive. This would be advantageous to the consideration of Nageiaceae as a primitive representative, or a descendant of fhe paleogymnos-perm cordaitean plants.  相似文献   

15.
The fossil plants were collected from Taohaiyingzi Formation occurring at Taohaiyingzi and Ailaishaorong of eastern Nei Monggol. The new species, such as Rhipidopsis taohaiyingensis (sp. nov.) and P. ailaishaorongensis (sp. nov.) are described. The writer considered that the fossil plants indicate that this bearingbeds belong to Late Permian.  相似文献   

16.
果实是被子植物特有的繁殖器官,果实的类型影响种子传播的模式、有效性和距离。果实类型的多样性在一定程度上造成了不同植物类群在生态上的差异,并对被子植物的进化速度和分化模式产生重要影响。本文对果实类型多样性形成中起关键作用的通路及其进化机制进行了综述,讨论了影响果实类型进化的各种因素,介绍了有关果实类型进化方向和模式的研究进展,为研究被子植物果实多样性的形成和演化提供新的思路。  相似文献   

17.
The Ventilago Gaertn. (Rhamnaceae) is widely distributed in pantropical areas of Africa, Asia, and Australia. However, fossil records of this taxon are sparse, which limits understanding of the evolution and biogeographic history of the genus. In the present study, we report and describe two new fossil species of Ventilago, V. siwalika sp. nov. from the Miocene sediments of Himachal Pradesh, western Himalaya, and V. pliocenica sp. nov. from the Pliocene sediments of Jharkhand, eastern India based on single-winged samaras. Ventilago pliocenica is characterized by a prominent midvein, obtuse to sub-round apex with mucronate tip, longitudinal secondary veins extending the full length of the fruit, and reticulate nature of higher-order veins, the presence of equatorial rim, the hypanthium, and short pedicel. On the other hand, V. siwalika is characterized by a prominent midvein, obtuse to sub-round apex with mucronate tip, longitudinal secondary veins extending the full length of the fruit, and reticulate nature of higher-order veins. Our discovery represents the first unambiguous fossil record of single-winged samara of Ventilago from India and provides valuable insights into the evolution of this genus. In this paper, we also review its biogeographic history and add new information to understand its hypothetical migration route. Present and earlier records of Ventilago also suggest that this genus was a common forest element during Neogene (Miocene time) in Asia.  相似文献   

18.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

19.
Most angiosperms have gynoecia with two to five carpels. However, more than five carpels (here termed ‘multicarpellate condition’) are present in some representatives of all larger subclades of angiosperms. In such multicarpellate gynoecia, the carpels are in either one or more than one whorl (or series). I focus especially on gynoecia in which the carpels are in a single whorl (or series). In such multicarpellate syncarpous gynoecia, the closure in the centre of the gynoecium is imprecise as a result of slightly irregular development of the carpel flanks. Irregular bumps appear to stuff the remaining holes. In multicarpellate gynoecia, the centre of the remaining floral apex is not involved in carpel morphogenesis, so that this unspent part of the floral apex remains morphologically undifferentiated. It usually becomes enclosed within the gynoecium, but, in some cases, remains exposed and may or may not form simple excrescences. The area within the remaining floral apex is histologically characterized by a parenchyma of simple longitudinal cell rows. In highly multicarpellate gynoecia with the carpels in a whorl, the whorl tends to be deformed into an H‐shaped or star‐shaped structure by differential growth of the floral sectors, so that carpels become aligned in parallel rows, in which they face each other with the ventral sides. In this way, a fractionated compitum may still be functional. Multicarpellate gynoecia (with the carpels in one whorl or series) occur in at least one species in 37 of the 63 angiosperm orders. In contrast, non‐multicarpellate gynoecia are present in at least one species of all 63 orders. The basal condition in angiosperms is more likely non‐multicarpellate. Multicarpellate gynoecia are restricted to flowers that are not highly synorganized. In groups with synorganized androecium and gynoecium and in groups with elaborate monosymmetric flowers, multicarpellate gynoecia are lacking. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 1–43.  相似文献   

20.
The application of sieving techniques to bulk samples from the Ashizawa Formation, Futaba Group (Lower Coniacian) of northeastern Honshu, Japan, has yielded well-preserved mesofossil assemblages comparable with those recently described from eastern North America, Europe, and central Asia. Among the most abundant and distinctive components of these assemblages are fusiform fruits that are assigned here to a new genus and species, Hironoia fusiformis gen. et sp. nov. The fruits developed from an epigynous ovary with three to four locules. Each locule bears one seed and has a distinctive dorsal germination valve. These features of the fruit, along with the adnate calyx, indicate an affinity to extant Cornales and specifically the Cornaceae sensu lato. The recognition of an unequivocal cornalean fruit in the Early Coniacian–Early Santonian of Japan provides the earliest record of this group in the fossil record. It also establishes a minimum age for the early divergence of the asterid clade, a major group of living angiosperms comprising more than a third of all species of extant flowering plants. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号