共查询到20条相似文献,搜索用时 0 毫秒
1.
A reaction–diffusion model for the spatial spread of West Nile virus is developed and analysed. Infection dynamics are based on a modified version of a model for cross infection between birds and mosquitoes (Wonham et al., 2004, An epidemiological model for West-Nile virus: Invasion analysis and control application. Proc. R. Soc. Lond. B 271), and diffusion terms describe movement of birds and mosquitoes. Working with a simplified version of the model, the cooperative nature of cross-infection dynamics is utilized to prove the existence of traveling waves and to calculate the spatial spread rate of infection. Comparison theorem results are used to show that the spread rate of the simplified model may provide an upper bound for the spread rate of a more realistic and complex version of the model. 相似文献
2.
Gautier Robin Martin J. Stoermer Paul R. Young Jennifer L. Martin 《Journal of molecular biology》2009,385(5):1568-19215
Over the last decade, West Nile virus has spread rapidly via mosquito transmission from infected migratory birds to humans. One potential therapeutic approach to treating infection is to inhibit the virally encoded serine protease that is essential for viral replication. Here we report the crystal structure of the viral NS3 protease tethered to its essential NS2B cofactor and bound to a potent substrate-based tripeptide inhibitor, 2-naphthoyl-Lys-Lys-Arg-H (Ki = 41 nM), capped at the N-terminus by 2-naphthoyl and capped at the C-terminus by aldehyde. An important and unexpected feature of this structure is the presence of two conformations of the catalytic histidine suggesting a role for ligand stabilization of the catalytically competent His conformation. Analysis of other West Nile virus NS3 protease structures and related serine proteases supports this hypothesis, suggesting that the common catalytic mechanism involves an induced-fit mechanism. 相似文献
3.
Elizabeth A. Dietrich Stanley A. Langevin Claire Y.-H. Huang Payal D. Maharaj Mark J. Delorey Richard A. Bowen Richard M. Kinney Aaron C. Brault 《PLoS neglected tropical diseases》2016,10(8)
West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells. 相似文献
4.
西尼罗病毒(West Nile virus, WNV)非结构蛋白NS5是病毒基因组复制的关键蛋白.以病毒全长cDNA克隆为模板,PCR扩增获得NS5的RNA依赖的RNA聚合酶(RdRp)活性区(NS5pol)及该蛋白完整的编码序列(NS5F),分别克隆于原核表达载体pET-28a 并转化至大肠杆菌E.coliBL21(DE3)中诱导表达.表达的可溶性重组蛋白经Ni柱亲和层析纯化后进行SDS-PAGE和Western印迹鉴定.结果显示,二者均为病毒特异蛋白,且纯度均在90%以上.进一步的体外RdRp分析及EMSA的结果表明,NS5pol和NSF5均有较高的RdRp活性,且该活性具有RNA模板序列和二级结构的特异性.获得的具有RdRp活性的NS5pol和NS5F为西尼罗病毒基因组复制相关元件的研究奠定了基础. 相似文献
5.
Rebecca N. Adamek Roxanne V. Maniquis Sabaha Khakoo Michael D. Bridges Nicholas T. Salzameda 《Bioorganic & medicinal chemistry letters》2013,23(17):4848-4850
The West Nile Virus (WNV) has been a worldwide epidemic since the early 1990s. Currently there are no therapeutic treatments for WNV infections. One particular avenue of treatment is inhibition of the NS2B-NS3 protease, an enzyme that is crucial for WNV replication. In our effort to increase the number of NS2B-NS3 protease inhibitors, we report a novel FRET-based high throughput assay for the discovery of WNV NS2B-NS3 protease inhibitors. For this assay, a FRET-based peptide substrate was synthesized and kinetically characterized with the NS2B-NS3 protease. The new substrate exhibits a Km of 3.35 ± 0.31 μM, a kcat of 0.0717 ± 0.0016 s?1 and a kcat/Km of 21,400 ± 2000 M?1 s?1. 相似文献
6.
Macdonald J Tonry J Hall RA Williams B Palacios G Ashok MS Jabado O Clark D Tesh RB Briese T Lipkin WI 《Journal of virology》2005,79(22):13924-13933
The West Nile virus (WNV) nonstructural protein NS1 is a protein of unknown function that is found within, associated with, and secreted from infected cells. We systematically investigated the kinetics of NS1 secretion in vitro and in vivo to determine the potential use of this protein as a diagnostic marker and to analyze NS1 secretion in relation to the infection cycle. A sensitive antigen capture enzyme-linked immunosorbent assay (ELISA) for detection of WNV NS1 (polyclonal-ACE) was developed, as well as a capture ELISA for the specific detection of NS1 multimers (4G4-ACE). The 4G4-ACE detected native NS1 antigens at high sensitivity, whereas the polyclonal-ACE had a higher specificity for recombinant forms of the protein. Applying these assays we found that only a small fraction of intracellular NS1 is secreted and that secretion of NS1 in tissue culture is delayed compared to the release of virus particles. In experimentally infected hamsters, NS1 was detected in the serum between days 3 and 8 postinfection, peaking on day 5, the day prior to the onset of clinical disease; immunoglobulin M (IgM) antibodies were detected at low levels on day 5 postinfection. Although real-time PCR gave the earliest indication of infection (day 1), the diagnostic performance of the 4G4-ACE was comparable to that of real-time PCR during the time period when NS1 was secreted. Moreover, the 4G4-ACE was found to be superior in performance to both the IgM and plaque assays during this time period, suggesting that NS1 is a viable early diagnostic marker of WNV infection. 相似文献
7.
Dariusz Ekonomiuk Xun-Cheng Su Kiyoshi Ozawa Christophe Bodenreider Siew Pheng Lim Zheng Yin Thomas H. Keller David Beer Viral Patel Gottfried Otting Amedeo Caflisch Danzhi Huang 《PLoS neglected tropical diseases》2009,3(1)
Background
The non-structural 3 protease (NS3pro) is an essential flaviviral enzyme and therefore one of the most promising targets for drug development against West Nile virus (WNV) and dengue infections.Methodology
In this work, a small-molecule inhibitor of the WNV NS3pro has been identified by automatic fragment-based docking of about 12000 compounds and testing by nuclear magnetic resonance (NMR) spectroscopy of only 22 molecules. Specific binding of the inhibitor into the active site of NS3pro and its binding mode are confirmed by 15N-HSQC NMR spectra. The inhibitory activity is further validated by an enzymatic assay and a tryptophan fluorescence quenching assay.Conclusion
The inhibitor [4-(carbamimidoylsulfanylmethyl)-2,5-dimethylphenyl]-methylsulfanylmethanimidamide has a good ratio of binding affinity versus molecular weight (ligand efficiency of 0.33 kcal/mol per non-hydrogen atom), and thus has good potential as lead compound for further development to combat West Nile virus infections. 相似文献8.
Modelling the dynamics of West Nile Virus 总被引:1,自引:0,他引:1
Cruz-Pacheco G Esteva L Montaño-Hirose JA Vargas C 《Bulletin of mathematical biology》2005,67(6):1157-1172
In this work we formulate and analyze a mathematical model for the transmission of West Nile Virus (WNV) infection between
vector (mosquito) and avian population. We find the Basic Reproductive Number
in terms of measurable epidemiological and demographic parameters.
is the threshold condition that determines the dynamics of WNV infection: if
the disease fades out, and for
the disease remains endemic. Using experimental and field data we estimate
for several species of birds. Numerical simulations of the temporal course of the infected bird proportion show damped oscillations
approaching the endemic value. 相似文献
9.
Hyelim Cho Bimmi Shrestha Ganes C. Sen Michael S. Diamond 《Journal of virology》2013,87(15):8363-8371
Previous studies have demonstrated that type I interferon (IFN-I) restricts West Nile virus (WNV) replication and pathogenesis in peripheral and central nervous system (CNS) tissues. However, the in vivo role of specific antiviral genes that are induced by IFN-I against WNV infection remains less well characterized. Here, using Ifit2−/− mice, we defined the antiviral function of the interferon-stimulated gene (ISG) Ifit2 in limiting infection and disease in vivo by a virulent North American strain of WNV. Compared to congenic wild-type controls, Ifit2−/− mice showed enhanced WNV infection in a tissue-restricted manner, with preferential replication in the CNS of animals lacking Ifit2. Virological analysis of cultured macrophages, dendritic cells, fibroblasts, cerebellar granule cell neurons, and cortical neurons revealed cell type-specific antiviral functions of Ifit2 against WNV. In comparison, small effects of Ifit2 were observed on the induction or magnitude of innate or adaptive immune responses. Our results suggest that Ifit2 restricts WNV infection and pathogenesis in different tissues in a cell type-specific manner. 相似文献
10.
Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms 下载免费PDF全文
Chung KM Nybakken GE Thompson BS Engle MJ Marri A Fremont DH Diamond MS 《Journal of virology》2006,80(3):1340-1351
The flavivirus nonstructural protein NS1 is a highly conserved secreted glycoprotein that does not package with the virion. Immunization with NS1 elicits a protective immune response against yellow fever, dengue, and tick-borne encephalitis flaviviruses through poorly defined mechanisms. In this study, we purified a recombinant, secreted form of West Nile virus (WNV) NS1 glycoprotein from baculovirus-infected insect cells and generated 22 new NS1-specific monoclonal antibodies (MAbs). By performing competitive binding assays and expressing truncated NS1 proteins on the surface of yeast (Saccharomyces cerevisiae) and in bacteria, we mapped 21 of the newly generated MAbs to three NS1 fragments. Prophylaxis of C57BL/6 mice with any of four MAbs (10NS1, 14NS1, 16NS1, and 17NS1) strongly protected against lethal WNV infection (75 to 95% survival, respectively) compared to saline-treated controls (17% survival). In contrast, other anti-NS1 MAbs of the same isotype provided no significant protection. Notably, 14NS1 and 16NS1 also demonstrated marked efficacy as postexposure therapy, even when administered as a single dose 4 days after infection. Virologic analysis showed that 17NS1 protects at an early stage in infection through a C1q-independent and Fc gamma receptor-dependent pathway. Interestingly, 14NS1, which maps to a distinct region on NS1, protected through a C1q- and Fc gamma receptor-independent mechanism. Overall, our data suggest that distinct regions of NS1 can elicit protective humoral immunity against WNV through different mechanisms. 相似文献
11.
Site-directed mutagenesis and kinetic studies of the West Nile Virus NS3 protease identify key enzyme-substrate interactions 总被引:3,自引:0,他引:3
Chappell KJ Nall TA Stoermer MJ Fang NX Tyndall JD Fairlie DP Young PR 《The Journal of biological chemistry》2005,280(4):2896-2903
The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ac-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in WNV NS3 protease at S1 (V115A/F, D129A/E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases. 相似文献
12.
研究了NS5蛋白在西尼罗病毒的特异性检测方面的应用及NS5在黄病毒复制中的作用机理。采用RT.PCR方法扩增了西尼罗病毒株的NS5基因片段,将其克隆至真核表达载体pVAX1,构建真核表达质粒。以重组质粒免疫BALB/c小鼠后取脾脏进行杂交瘤细胞融合,建立能稳定分泌西尼罗NS5单克隆抗体的杂交瘤细胞株。构建了真核表达质粒pVAX1-WNV—NS5,免疫动物后获得了28289等4株稳定分泌特异性抗体的杂交瘤细胞株,均为IgM型。真核表达质粒免疫后成功地诱导了针对NS5蛋白的体液免疫应答,单抗特异性分析显示4株单抗与其他黄病毒存在一定交叉反应。 相似文献
13.
Marcin Skoreński Aleksandra Milewska Krzysztof Pyrć Marcin Sieńczyk 《Journal of enzyme inhibition and medicinal chemistry》2019,34(1):8-14
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease. 相似文献
14.
15.
16.
17.
18.
19.
S. J. Anthony M. M. Garner L. Palminteri I. Navarrete-Macias M. D. Sanchez-Leon T. Briese P. Daszak W. I. Lipkin 《EcoHealth》2014,11(2):255-257
West Nile virus (WNV) first emerged in the US in 1999 and has since spread across the Americas. Here, we report the continued expansion of WNV to the British Virgin Islands following its emergence in a flock of free-roaming flamingos. Histologic review of a single chick revealed lesions consistent with WNV infection, subsequently confirmed with PCR, immunohistochemistry and in situ hybridization. Full genome analysis revealed 99% sequence homology to strains circulating in the US over the past decade. This study highlights the need for rapid necropsy of wild bird carcasses to fully understand the impact of WNV on wild populations. 相似文献
20.
Threshold Conditions for West Nile Virus Outbreaks 总被引:1,自引:0,他引:1
Jifa Jiang Zhipeng Qiu Jianhong Wu Huaiping Zhu 《Bulletin of mathematical biology》2009,71(3):627-647
In this paper, we study the stability and saddle-node bifurcation of a model for the West Nile virus transmission dynamics.
The existence and classification of the equilibria are presented. By the theory of K-competitive dynamical systems and index
theory of dynamical systems on a surface, sufficient and necessary conditions for local stability of equilibria are obtained.
We also study the saddle-node bifurcation of the system. Explicit subthreshold conditions in terms of parameters are obtained
beyond the basic reproduction number which provides further guidelines for accessing control of the spread of the West Nile
virus. Our results suggest that the basic reproductive number itself is not enough to describe whether West Nile virus will
prevail or not and suggest that we should pay more attention to the initial state of West Nile virus. The results also partially
explained the mechanism of the recurrence of the small scale endemic of the virus in North America.
Supported by the Chinese NSF grants 10531030 and 10671143.
Supported by the Chinese NSF grants 10801074.
Supported by Canada Research Chairs Program, Mathematics for Information Technology and Complex Systems (MITACS), National
Microbiology Laboratory, Natural Sciences and Engineering Research Council (NSERC), Canadian Foundation of Innovation (CFI)
and Ontario Innovation Trust (OIT), Ontario Ministry of Health and Long-term Care, Peel, Toronto, Chat-Kent Health Units,
and Public Health Agency of Canada (PHAC).
Supported by NSERC, MITACS, CFI/OIT a new opportunity fund, Early Research Award of Ministry of Research and Innovation (ERA)
of Ontario, Infectious Diseases Branch of Ministry of Health and Long Term Care (MOH) of Ontario and PHAC. 相似文献