首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early Stages in Wheat Endosperm Formation and Protein Body Initiation   总被引:2,自引:0,他引:2  
The early stages of endosperm formation and protein body initiationare described for hard red winter wheat using light and transmissionelectron microscopy. Two days after flowering (DAF) the endospermwas a thin layer of coenocytic cytoplasm lining the embryo sac.By 4 DAF the endosperm had cellularized and completely filledthe embryo sac. Enough differentiation had occurred by 6 DAFto distinguish cells destined to become the aleurone layer,sub-aleurone region and central endosperm. Protein bodies wereinitiated at about 6–7 DAF and were first found near theGolgi apparatus. Wheat was ready for combine harvest at 34 DAF.Enlargement of the small protein bodies near the Golgi apparatusoccurred by several mechanisms: (1) fusion with one or moreof the dense Golgi vesicles or fusion with other protein bodies,(2) fusion with small electron-lucent Golgi-derived vesicles,(3) pinocytosis of a portion of the adjacent cytoplasm intothe developing protein body and (4) fusion of large proteinbodies with one another at later stages of grain development.Of the four mechanisms described, the pinocytotic vesicles andfusion of protein bodies were the most frequent and consistentprocesses observed. Direct connections between rough endoplasmicreticulum (RER) and protein bodies were not observed. The resultssuggest a rôle for the Golgi apparatus in the initiationof protein bodies. Also, the lack of RER derived vesicles suggestsa soluble mode of secretion of storage proteins involved inthe enlargement of protein bodies. Triticum aestivum, wheat endosperm, protein bodies Golgi apparatus  相似文献   

2.
The process of protein body formation from rough endoplasmicreticulum (RER) in cotyledon cells of soybean has been followed.From about 43 d after flowering (DAF), the lumen of some partsof RER cisternae was dilated and filled gradually with proteinaceousmaterial. This kind of dilated RER expanded further to formlong and irregularly shaped protein bodies (PBs), and the latterdivided into smaller spherical protein bodies in mature seedsat 63 DAF. From these results and our previous observations,we draw the conclusion that there are two pathways of proteinbody formation in developing cotyledon cells in soybean. Duringthe early stage, vacuoles in the cells were filled with proteinaceousmaterial and turned into protein bodies. During the late stage,some of the dilated RER with storage proteins developed intoPBs A few vacuoles can also form PBs at this late stage. Inaddition, some fibre structures, 7–8 nm in width, wereseen to be oriented in parallel in longitudinal sections ofRER cisternae in cotyledon cells at 45 DAF. Soybean, protein body, ER origin, storage protein  相似文献   

3.
4.
5.
Supplemental methionine in a complete culture medium increased the methionine content of the protein fraction of cultured soybean (Glycine max L. Merrill) cotyledons (Thompson, Madison, Muenster 1981 Phytochemistry 20: 941-945). To explain the observed increase in protein methionine, we have measured the amounts and subunit compositions of 7S and 11S storage proteins and determined the amino acid compositions of the three major protein fractions (2-5S, 7S, 11S) of seeds developed on plants and of cultured cotyledons grown in the presence or absence of supplemental l-methionine. Development of cultured cotyledons was representative of development of seeds on plants. The ratios of 11S to 7S proteins, the subunit contents, and amino acid compositions of their storage protein fractions were similar, but not identical. Supplemental methionine increased the mole percent methionine in each of the three protein fractions of cultured cotyledons and changed the amounts of several other amino acids. Supplemental methionine inhibited expression of the 7S β-subunit gene. Concomitant with the absence of the β-subunit, which contains no methionine, was an increase in the ratio of 11S to 7S proteins, and an increase in the methionine content of the subunits composing these fractions. Inhibition of β-subunit gene expression by methionine in cultured cotyledons provides a reproducible, easily controlled system for the study of eucaryotic gene expression.  相似文献   

6.
We have developed an assay to monitor in vitro the posttranslational assembly of the chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Most of the newly synthesized 55-kD catalytic ("large") subunits of this enzyme occur in a 29S complex together with 60- and 61-kD "binding" proteins. When the 29S complex is incubated with ATP and MgCl2 it dissociates into subunits, and the formerly bound large subunits now sediment at 7S (still faster than expected for a monomer). Upon incubation at 24 degrees C, these large subunits assemble into RuBisCO. The minority of newly made large subunits which are not bound to the 29S complex also sediment at 7S. When endogenous ATP was removed by addition of hexokinase and glucose, the dissociation of the 29S complex was inhibited. Nevertheless, the 7S large subunits assembled into RuBisCO, and did so to a greater extent than in controls retaining endogenous ATP. Thus the 7S large subunits are also assembly competent, at least when ATP is removed. Apparently, in chloroplast extracts, ATP can have a dual effect on the assembly of RuBisCO: on the one hand, even at low concentrations it can inhibit incorporation of 7S large subunits RuBisCO; on the other hand, at higher concentrations it can lead to substantial buildup of the 7S large subunit pool by causing dissociation of the 29S complex, and stimulate overall assembly. At both high and zero concentrations of ATP, however, antibody to the binding protein inhibited the assembly of endogenous large subunits into RuBisCO. Thus it appears that all assembly-competent large subunits are associated with the binding protein, either in the 7S complex or in the 29S complex. The involvement of the binding protein in RuBisCO assembly may represent the first example of non-autonomous protein assembly in higher plants and may pose problems for the genetic engineering of RuBisCO from these organisms.  相似文献   

7.
Protein-protein cross-linking was used to examine the spatial arrangement of proteins within the 40 S ribosomal subunits of Saccharomyces cerevisiae. Purified ribosomal subunits were treated with either 2-iminothiolane or dimethyl 3,3'-dithiobispropionimidate under conditions such that the ribosomal particle was intact and that formation of 40 S subunit dimers was minimized. Proteins were extracted from the treated subunits and fractionated on Sephadex G-150 or by acid-urea-polyacrylamide gel electrophoresis. Cross-linked proteins in these fractions were analyzed by two-dimensional diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Constituent members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Forty-two pairs involving 25 of the 32 40 S subunit proteins were identified. Many proteins were detected in several cross-linked dimers. These proteins with multiple cross-links form foci for the construction of a schematic model of the spatial arrangement of proteins within the 40 S subunit.  相似文献   

8.
Expression of storage-protein genes during soybean seed development   总被引:9,自引:0,他引:9  
D. W. Meinke  J. Chen  R. N. Beachy 《Planta》1981,153(2):130-139
Mature seeds of Glycine max (L.) Merr. contain two major storage proteins, a glycosylated 7S protein (conglycinin) and a non-glycosylated 11S protein (glycinin). Accumulation of these proteins and their mRNAs during seed development in cv. Provar was studied by SDS polyacrylamide gel electrophoresis and by Northern (DNA-RNA) hybridization. The 11S acidic and basic subunits and the 7S and subunits began to accumulate 18–20 d after pollination, shortly after the termination of cell division in developing cotyledons, whereas the 7S and 11S A-4 subunits were not detected until one to two weeks later, during the maturation phase of development. Messenger RNAs for 7S and 11S proteins were first detected 14–18 d after pollination, several days before the accumulation of storage proteins. Extracts from embryonic axes contained reduced levels of the 7S subunit, very little 11S protein, no detectable 7S or 11S A-4 subunits, and an additional 7S subunit not found in cotyledons. Soybean axes and cotyledons therefore differ in their synthesis of seed storage proteins.Abbreviations cDNA complimentary DNA - mRNA messenger RNA - SDS sodium dodecyl sulfate  相似文献   

9.
The difference in storage protein accumulation between two soybean was compared by SDS-PAGE and electron microscopy. The results showed that the “Gongjiao 8059-3” (protein content 45 %) was more rapid in protein accumulation rate and higher in protein content than that in “GD 1515” (protein content 35 %) during cotyledon development. The subunits (7S and l1S) of the storage protein accumulated earlier in “Gongjiao 8059-3” than in “GD 1515”. Under electron microscope, the protein accumulated in vacuoles was similar between the two cultivars, but the protein density was higher and the volume of protein bodies was larger in cells after mid developing stage in “Gongjiao 8059-3”. These results showed that difference in protein contents may be based on biochemical and structural alterations.  相似文献   

10.
The complement regulatory protein decay accelerating factor (DAF; CD55), inhibits the alternative complement pathway by accelerating decay of the convertase enzymes formed by C3b and factor B. We show, using surface plasmon resonance, that in the absence of Mg(2+), DAF binds C3b, factor B, and the Bb subunit with low affinity (K(D), 14 +/- 0.1, 44 +/- 10, and 20 +/- 7 microm, respectively). In the presence of Mg(2+), DAF bound Bb or the von Willebrand factor type A subunit of Bb with higher affinities (K(D), 1.3 +/- 0.5 and 2.2 +/- 0.1 microm, respectively). Interaction with the proenzyme C3bB was investigated by flowing factor B across a C3b-coated surface in the absence of factor D. The dissociation rate was dependent on the time of incubation, suggesting that a time-dependent conformational transition stabilized the C3b-factor B interaction. Activation by factor D (forming C3bBb) increased the complex half-life; however, the enzyme became susceptible to rapid decay by DAF, unlike the proenzyme, which was unaffected. A convertase assembled with cobra venom factor and Bb was decayed by DAF, albeit far less efficiently than C3bBb. DAF did not bind cobra venom factor, implying that Bb decay is accelerated, at least in part, through DAF binding of this subunit. It is likely that DAF binds the complex with higher affinity/avidity, promoting a conformational change in either or both subunits accelerating decay. Such analysis of component and regulator interactions will inform our understanding of inhibitory mechanisms and the ways in which regulatory proteins cooperate to control the complement cascade.  相似文献   

11.
The sequence of cDNA coding for a sulphur-rich storage protein from Lupinus angustifolius L., conglutin , was determined. The coding region contained an N-terminal leader peptide of 28 amino acids which directly preceded subunits of M r 28 239 and 16 517. Extensive sequence homology between the protein encoded by conglutin cDNA and basic 7S globulin from soybean was observed. Sequence homology to proteins from other classes of storage proteins, 11S, 7S and 2S, was limited to short and highly fragmented sequences. The amino acid sequence, Asn-Gly-Leu-Glu-Glu-Thr, characteristic of the primary site for post-translational cleavage of the precursors of 11S proteins, was absent from the sequence predicted for prepro-conglutin . It is concluded that conglutin is a representative of a fourth type of storage protein in legumes, distinct from the 11S, 7S and 2S storage protein families.  相似文献   

12.
从人胎脑c DNA文库中筛选和鉴定出与人巨细胞病毒(Human cytomegalovirus,HCMV)UL55编码蛋白结合的蛋白。将UL55基因编码区克隆到诱饵载体p GBKT7中,在证实UL55蛋白不具有自激活作用的前提下,采用Match-maker GAL酵母双杂交系统筛选人胎脑c DNA文库中与UL55蛋白结合的宿主蛋白,用酵母双杂交回转实验验证UL55蛋白与获得的蛋白结合的可靠性。将酵母双杂交筛选出的文库蛋白烯醇化酶1(enolase1,ENO 1)构建到p GEX-4T-2载体上,利用GST pull-down技术体外验证ENO 1与HCMV UL55蛋白的结合。并依据所筛选出蛋白的生物学功能分析UL55蛋白可能的生物学功能。结果显示有10种蛋白与HCMV UL55编码蛋白结合。应用GST pull-down技术检测到ENO 1与HCMV UL55相互结合的蛋白条带。成功地筛选出10种与UL55蛋白相互结合的宿主蛋白,GST pull-down实验进一步表明ENO 1可以与HCMV UL55蛋白直接结合,为进一步研究UL55蛋白的功能提供了新的线索。  相似文献   

13.
Germination of Archontophoenix alexandrae seeds and embryos were studied under gradient water content treatments throughout the seed development phases of maturation in 2005 to investigate seed desiccation tolerance and storage characteristics. During the maturation process, seed water content decreased gradually from55 DAF (days after flowering) to 70 DAF, and seeds reached the maximum dry-weight at 90 DAF. Seed germinability appeared after 60 DAF. Seeds germinated with a temperature range from15℃- 40℃ under alternating photoperiod (14 h light, 10 h dark, 12μmol m- 2s - 1 ), while the best germination percentage was obtained between 30℃- 35℃. A maximum germination capacity reached at 70 DAF. However, seed germination was greatly inhibited by light. Desiccation tolerance of seeds and embryos increasedgradually from 55 DAF to 90 DAF and reached the maximum at 90 DAF with a semilethal water content of 0.18 g/g ( seed) and 0.3 g/g ( embryo) respectively. Rapid dehydration maintained higher seed germination percentage than thatof slow dehydration when drying to the same water content. Seeds with without water content treatments failed to germinate after 1 month storage under - 18℃, whereas appropriate desiccation treatment prolonged seed longevity under 4℃, 10℃ and 15℃ storage temperatures. It revealed obviously the recalcitrant characteristics of Archontophoenix alexandrae seeds torage behaviour which are tolerant toward neither deep desiccation nor low temperatures.  相似文献   

14.
Supplemental methionine in a complete culture medium increased the methionine content of the protein fraction of cultured soybean (Glycine max L. Merrill) cotyledons (Thompson, Madison, Muenster 1981 Phytochemistry 20: 941-945). To explain the observed increase in protein methionine, we have measured the amounts and subunit compositions of 7S and 11S storage proteins and determined the amino acid compositions of the three major protein fractions (2-5S, 7S, 11S) of seeds developed on plants and of cultured cotyledons grown in the presence or absence of supplemental l-methionine. Development of cultured cotyledons was representative of development of seeds on plants. The ratios of 11S to 7S proteins, the subunit contents, and amino acid compositions of their storage protein fractions were similar, but not identical. Supplemental methionine increased the mole percent methionine in each of the three protein fractions of cultured cotyledons and changed the amounts of several other amino acids. Supplemental methionine inhibited expression of the 7S beta-subunit gene. Concomitant with the absence of the beta-subunit, which contains no methionine, was an increase in the ratio of 11S to 7S proteins, and an increase in the methionine content of the subunits composing these fractions. Inhibition of beta-subunit gene expression by methionine in cultured cotyledons provides a reproducible, easily controlled system for the study of eucaryotic gene expression.  相似文献   

15.
The initial biochemical characterization of the soybean sucrose-binding protein, GmSBP, within our lab and others produced several incongruous characteristics that required a re-characterization of GmSBP via sequence homology, cell biology, immunolocalization, and semi-quantitative analysis. The GmSBP proteins share amino acid sequence homology as well as putative structural homology with globulin-like seed storage proteins. A comparison to the major soybean seed storage proteins, glycinin and -conglycinin established several storage protein-like characteristics for GmSBP. All three proteins were present in a prevacuolar compartment and protein storage vacuole. All three proteins increased in expression during seed development and are remobilized during germination. Quantitatively, the relative concentrations of GmSBP, -conglycinin (/ subunits), and glycinin (acidic subunits) indicated that GmSBP contributes 19-fold less to the stored nitrogen. The quantitative differences between GmSBP and glycinin may be attributed to the unconserved order and spacing of cis-acting regulatory elements present within the promoter regions. Ultimately, GmSBP is transported to the mature protein storage vacuole. The biological function of GmSBP within the protein storage vacuole remains uncertain, but its localization is a remnant of its evolutionary link to a globulin-like or vicilin-like ancestor that gave rise to the 7S family of storage proteins.  相似文献   

16.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

17.
18.
Salt-soluble proteins, albumin and globulin, were prepared from dehulled rice (Oryza sativa L., line IR1541-76-3) during grain development. Albumin and globulin progressively increased during grain development up to about 12 days after flowering (DAF) and then decreased slightly during grain desiccation. Free amino N was maximum at 10 DAF. Total protein and glutelin-prolamin (by difference) continued to increase up to 20 DAF. Aminogram of total protein and globulin showed a progressive decrease in lysine and threonine among the essential amino acids. Albumin showed a similar trend except for the lesser change in lysine content. Disc gel electrophoresis showed a maximum of four major and six minor protein bands for albumin and only one major and three minor bands for globulin. Sodium dodecyl sulfate-gel electrophoresis revealed three major polypeptide subunits for albumin with MW of 11 000, 8 500 and 16 000, and two for globulin with MW of 20 000 and 12 000.  相似文献   

19.
A short interdomain sequence between the N- and C-terminal domains of beta-conglycinin, the major 7S seed storage protein of soybean, was selected as a target for insertion of amino acid residues specifically cleaved by an asparaginyl endopeptidase that processes globulins into acidic and basic chains. Modified beta-conglycinin subunits containing the proteolytic cleavage site self-assembled into trimers in vitro at an efficiency similar to that of the unmodified subunit. In contrast to the absence of cleavage of the unmodified subunits, however, the modified beta-conglycinin trimers were processed by purified soybean asparaginyl endopeptidase into two polypeptides, each the size expected for the beta-conglycinin N- and C-terminal domains, respectively. The cleavage did not alter the assembly of mutant beta-conglycinins and the cleaved mutant trimers remained stable to further proteolytic attack. To examine the possibility of coassembly between the cleaved 11S and 7S subunits, in vitro processed mutant beta-conglycinin subunits were mixed with native dissociated 11S globulin preparations. Reassembly at a high ionic condition did not induce the 7S subunits to interact with 11S subunits to form hexameric complexes. Thus, cleavage of 7S globulin subunits into acidic and basic domains may not be sufficient for hexamer assembly to occur. Biotechnological implications of the engineered proteins are discussed.  相似文献   

20.
Using two-dimensional polyacrylamide gel electrophoresis, the protein patterns from HeLa 80S and 55S nucleolar precursor particles have been compared with those of cytoplasmic 40S and 60S ribosomal subunits. The 55S particle was found to have 21 anionic and 52 cationic proteins, including 18 large subunit ribosomal proteins. The 80S precursor pattern was identical to the 55S pattern except three anionic and four cationic proteins were absent. Of those missing cations, three were large subunit proteins. However, no small subunit ribosomal proteins were detected on either precursor. Numerous high molecular weight non-ribosomal proteins were found in both precursor particles and may correspond to a class of stable nucleolar proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号