首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻原生质体再生植株及后代的性状表现   总被引:6,自引:0,他引:6  
佘建明  李向辉 《遗传学报》1990,17(6):438-442
获得了粳型水稻77-170品系原生质体再生植株(R_2)6个株系的206棵后代植株。对其中96株进行性状观察和细胞学染色体鉴定,发现再生植株子代在株高、剑叶和主穗长、单株有效穗数、每穗粒数、育性、生育期等性状上都产生了变异,除株高外其他性状在第2代遗传上不稳定,染色体倍性稳定(2_n=24)。对56株再生植株子代作酯酶、过氧化物酶同工酶测定,其酶谱谱带与对照实生株相似。  相似文献   

2.
再生植株具有高频率的染色体异常,其中有20.61%表现为染色体数量变异,最常见的为2n—1类型,其次为2n—2类型,也有2n 1、2n—3个体以及染色体数嵌合株。再生植株减数分裂各期均有染色体异常行为,可以见到的有落后染色体、染色体桥、断片、二分体延迟、微核,还有粗线期十字型配对等结构变异,以及五分体、六分体和畸型四分体等异常现象。微核率随培养时间延长而增加,可用作染色体伤害的一个指标。再生植株R_1代存在着许多形态学变异。性状变异与染色体数目变异没有明显关系。  相似文献   

3.
Calli were induced from the young leaves and mature embryos of seven wheat-wheatgrass alien additional lines, and somaclones were established from the calli. A large number of plantlets were obtained and survived after transplantation. The medium WG used for tissue culture of wheat-wheatgrass alien addition lines was set up in the experiment. The methods induced callus with two kinds of media were used. The first medium WG2 supplemented with 4 mg/l 2, 4-D and l mg/l NAA was used for callus formation. The second medium was WG2 with 2 mg/l 2, 4-D, 0.5 mg/l NAA and 0.25 mg/l KT. Differentiation medium used was WG3 with 0.5 mg/l KT, 1mg/l NAA and 100 mg/l adenylic acid. The examination of the chromosomes in regenerated plants indicated that the chromosomal number variation was remarkable. The plants maintaining 2n=44 were only 34.4% of the total regenerated plants, and the plants with the chromosomal number returned to 2n=42 made a relatively greater part of the variational plants regenerated. About half of the regenerated plants showed morphological variations. The crossover, translocation and other chromosomal structural changes were found in PMCs of the variational plants regenerated. Meanwhile, the polycentric chromosome derived from the fusion of several chromosomes and chiasmata of somatic chromosomes were clearly observed in callus cells, indicating that crossover and translocation occurred in somacloaes.  相似文献   

4.
小冰麦异附加系的体细胞无性系建立及其变异的研究   总被引:4,自引:0,他引:4  
从7种小冰麦异附加系的幼叶和成熟胚诱导出愈伤组织,建立了体细胞无性系,获得大量试管苗,并移栽成活。实验设计了适于小冰麦异附加系组织培养的 WG 培养基。愈伤组织诱导采用二次诱导方法。第一诱导培养基为 WG_2附加4mg/1 2,4-D、1mg/1 NAA。第二诱导培养基为 WG_2附加2m//1 2,4-D、0.5mg/1 NAA,和0.25mg/1KT。分化培养基为 WG_3附加0.5mg/1 KT、1mg/1 NAA 和100mg/1 Ad。再生植株的染色体检查表明,异附加系无性系的染色体数变异明显。保持2n=44的再生植株只有34.4%,而且变异植株中回复到2n=42的植株较多。再生植株中约有1/2发生了形态变异。在变异植株的花粉母细胞中观察到染色体的交换、易位等结构变化。特别在愈伤组织细胞中观察到多条染色体融合成多着丝点染色体和体细胞的染色体交叉,说明无性系中发生了染色体的交换和易位。  相似文献   

5.
Hairy root lines were induced from leaf explants of Rauwolfia serpentina known to contain high levels of reserpine (0.0882 % DW) content. Out of five high yielding hairy root lines, three (R1, R14 and R15) exhibited spontaneous regeneration of shoots after 6–8 weeks in liquid B5 medium. Excised regenerated shoots underwent robust shoot proliferation when cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg/l naphthanleneacetic acid (NAA) and 1.0 mg/l 6-benzyladenine. When shoots were transferred to a root induction medium, consisting of MS basal medium and 1.0 mg/l NAA, all rooted within 2–3 weeks. Of a total of 45 plants developed from three different hairy root lines, 30 were successfully acclimatized and transferred to the green house. Almost 90 % of these plants grown in the green house showed no observed phenotypic differences, while 10 % were stunted and grew poorly, in comparison to non-transformed plants. Phenotypic assessment of regenerated plants for plant length, number of nodes and intermodal lengths, number of leaves per node, leaf color, leaf size, number of flowering shoots, flower size, fruit size, lateral root branching and root biomass was conducted. Polymerase chain reaction and Southern blot hybridization revealed that all plants derived from hairy roots carried the Ri TL-DNA fragment. Moreover for plants derived from transgenic hairy root line R14, presence of more than a single transgene copy number was observed, and this might have contributed to observed abnormal phenotypes. Analysis of reserpine content revealed that roots of regenerated plants had similar levels (0.0889 % DW) to those of their corresponding hairy roots.  相似文献   

6.
By counting the chromosome number of root tip cells in 18 regenerated plants derived from protoplasts of Actinidia eriantha Benth., the authors found 12 euploid plants and 6 mixoploid plants. Of the 12 euploid plants, 6 were diploid (2n = 2x = 58) and the other 6 were tetraploid (2n =4x = 116). The chromosome numbers of the mixoploid plants varied from 59 to 203. Mttltinueleate phenomenon was also observed in the interphase cells of 10 protoplast-derived plants. Cells with binuclei or trinuelei were common and cells having heptanuclei were also seen occassionally. Muhinucleate phenomenon did not occur in the control, i. e., the donor plant, where the chromosome number was 2n = 2x = 58.  相似文献   

7.
对18株毛花猕猴桃(Actinidia eriantha Benth.)原生质体再生植株的体细胞染色体数做了观察,其中12株为整倍体:二倍体(2n=58)和四倍体(2n=116)各6株;另外6株为混倍体,其染色体数目变化在59~203之间。还发现原生质体再生植株有丝分裂间期细胞存在多核现象,有多核细胞的共10株,细胞核数目以双核和三核较常见,最多的有7个核。对照植株为2n=2x=58,未发现多核细胞。  相似文献   

8.
普通小麦与簇毛麦双二倍体的合成,育性及细胞遗传学研究   总被引:16,自引:3,他引:16  
傅杰  陈漱阳 《遗传学报》1989,16(5):348-356
通过杂种幼胚无性系培养获得大量再生植株F_1,经秋水仙碱处理,合成了普通小麦与簇毛麦属间双二倍体(AABBDDVV)。其形态特征除株高、穗长、小穗数,籽粒大小和育性明显增加,生育期延长外,分别与各自的再生植株F_1相似。双二倍体的体细胞染色体数目变化范围为48—56。花粉母细胞减数分裂中期Ⅰ 2n=28Ⅱ的细胞占56.82%,每个细胞平均有27.10个二价体,1.44个单价体,0.08个三价体,0.03个四价体。经过连续两代单穗单株选择,结实率由15.91%提高到36.52%。  相似文献   

9.
Plants were regenerated from cultured excised leaf segments ofTurnera ulmifolia (2n = 6x = 30). Cytological studies have demonstrated that chromosome doubling occurred in 100% of the regenerated plants. Probably it was produced by endomitosis, induced by excess of auxins in relation to cytokinins. High bivalent and low quadrivalent frequency, and univalents to octovalents were observed in metaphase I; lagging chromosomes were also found. Probably, the presence of multivalents may be due to the pairing among homoeologous chromosomes because the mother plant is a segmental allohexaploid. The high bivalent frequency may have been caused by preferential pairing of identical chromosomes against the homologous.  相似文献   

10.
研究了美味猕猴桃叶愈伤组织原生质体再生植株和母株(ActinidiadeliciosalineNo.26)茎尖体细胞染色体数目。结果表明:母株2n=6x=174。所测29株再生植株的茎尖体细胞染色体数目差异显著,多为非整倍体类型,占所测植株的72.4%左右;体细胞染色体数目介于142-310条之间,其中2n=6x=174约占20.7%,少于174条染色体的植株约占31.0%,超过174条染色体的植株则占48.3%左右。个别单株部分茎尖体细胞在有丝分裂后期出现染色体桥、断片和落后染色体等异常现象。并对以上现象进行了扼要的讨论。  相似文献   

11.
Morphologically normal green plants have reproducibly been regenerated from protoplasts of an Australian wheat (Triticum aestivum cv. Hartog). The protoplasts were isolated from fine embryogenic suspension cultures which were initiated from embryogenic callus. Protoplasts were incubated in a modified liquid MS medium containing half strength of the macroelements, 5 m 2,4-D and 0.6 M glucose. Colonies were formed at frequencies ranging from 0.1% to 5%. The frequency of colonies forming fully developed plants varied between 1% and 25%. More than eighty green plants with morphologically normal shoots and roots have been obtained and there was no difficulty in establishing these plants in soil. A cytological study of several randomly selected regenerated plants showed the normal chromosome complement for wheat (2n = 42).  相似文献   

12.
Plants of black spruce (Picea mariana, N = 7047 individuals) and white spruce (P. glauca, N = 3995 individuals) were regenerated from a total of 87 clones over a 5-yr period by somatic embryogenesis to study factors that might be associated with the appearance of variant phenotypes. Morphological evaluation of the plants showed several types of variation. These variations were grouped into nine types: dwarfism (type A), reduced height with various form anomalies (types B, C, and D), needle fasciation (type E), abnormality in tree architecture (type F), variegata phenotype (type G), and plants with an overall regular morphology but smaller than normal plants (type H). Plagiotropic plants were also observed (type I). Each plant from types A to H (except type C where no plants survived more than 6 mo) had retained its phenotype over 4–5 yr of growth. Some of the variant types could be related to chromosomic instability: chromosome counts showed aneuploid cells for type-A and type-D plants. The type I (plagiotropism) was not related to genetic instability but rather to physiological disorders. In total, spruce variants of types A–H were obtained at relatively low frequencies, i.e., 1.0% (39/3995) for white spruce and 1.6% (110/7047) for black spruce. Statistical analyses, conducted with family, clone, and time in maintenance as variables, showed that clone was the most important source of genetic instability followed by time in maintenance.  相似文献   

13.
Z6/陕7859胚培养再生植株的细胞遗传学研究与易位系选育   总被引:6,自引:0,他引:6  
林志珊  钱幼婷 《遗传学报》1999,26(4):377-383
二体附加系Z6携带抗大麦黄矮病毒病基因,为了将其抗性导入小麦,将Z6与普通小麦陕7859杂交,杂种F1经幼胚培养诱导形成再生植株,对再生植株及后代进行抗性鉴定,农艺性状考察及对SC2部分抗病植株花粉母细胞减数分裂期染色体行为进行了观察。结果表明,(1)SC2不同单株间存在染色体数目,结构的变异。(2)同一再生植株后代的不同单株,染色体数目可能相同,但染色体组成及减数分裂期行为可心不同,致使后代抗性  相似文献   

14.
Selection of stable, NaCl tolerant alfalfa (Medicago sativa L.) cell lines was accomplished by a step-up selection procedure, whereby cell lines originally selected for tolerance at 0.5% NaCl were subsequently selected at 1.0% NaCl. Sodium chloride tolerant cell lines retained tolerance following four subcultures (16 weeks) on control media (0% NaCl). Plants were regenerated from selected NaCl tolerant cell lines of three initial genotypes, one diploid (2n=2x=16) and two tetraploids (2n=4x=32). In addition, plants were regenerated from control cell lines maintained on 0% NaCl media for the same duration. Plants regenerated from NaCl tolerant cell lines were characterized by extensive somaclonal variation compared to plants regenerated from control lines. Morphologically, all plants regenerated from NaCl tolerant cell lines are abnormal and many (44.7%) were extreme dwarfs (maximum height of 5 cm). The grossly aberrant phenotypes prevented an in-depth characterization of many of the plants regenerated from NaCl tolerant cell lines. Most plants regenerated from NaCl tolerant cell lines had unbalanced polyploid chromosome sets with the most extreme cytogenetic variant having 106 chromosomes. In contrast, 98.5% of the plants regenerated from control cell lines were euploid (85% were tetraploid, 15% were octoploid). Isozyme phenotypes of the plants from NaCl tolerant cell lines were also extensively altered, compared to plants from control cell lines. In vitro NaCl tolerance was maintained following plant regeneration for nine of the 12 regenerants tested. Importantly, whole plant NaCl tolerance was expressed in two of the seven regenerated plants tested at the whole plant level; however, only one of these plants has flowered and is both male and female sterile; the other plant has never flowered. Although NaCl tolerant alfalfa cell lines are efficiently selected, the extensive somaclonal variation that accompanied the selection was a deterrent to successful recovery of heritable NaCl tolerance.  相似文献   

15.
Summary Tissue cultures ofTriticum aestivum L. (wheat) initiated from young inflorescences and immature embryos possessed the potential for regeneration of whole plants. Both a friable and a compact type of callus were produced on Murashige and Skoog's medium with 2 mg/l 2,4-dichlorophenoxyacetic acid. The friable callus contained meristematic centers in which the peripheral cells ceased dividing, elongated, and could be easily separated. Roots were frequently formed in this type of callus. The compact, yellowish, and nodular callus arose from the epithelial and sub-epithelial cells of the embryo scutellum, and the rachis and glumes of the young inflorescence. Such callus had a smooth surface and characteristic chlorophyllous areas. Plants were regenerated only from the compact callus. The first sign of differentiation in the compact callus was the formation of a cleft or notch on the smooth surface, followed by the appearance of trichomes and the direct development of leafy structures which were not associated initially with any shoot meristems. Multiple shoots subsequently arose at the bases of the leafy structures, which are considered modifications of the scutellum, a definitive part of the cereal embryo. Accordingly, we suggest that while typical bipolar embryos are generally not formed, plant regeneration nevertheless takes place through embryogenesis and the precocious germination of the embryoids. Plants regenerated from immature embryo and inflorescence cultures were grown to maturity in soil, and were shown to have the normal chromosome number of 2n=6x=42.  相似文献   

16.
Somaclonal variation was studied in two Iranian land races of O. sativa spp. japonica var Hassani and O. sativa spp. indica var Sadridomsiah and 2000 plants of each cultivar were cytogenetically examined in two steps. In the first step, chromosome counts of root tips was used to detect ploidy levels and aneuploids of regenerated plants. In the second step, chromosomal aberrations were characterized by pachytene analysis of PMC’s. Ploidy levels were seen between n and 4n (haploids to tetraploids) in both cultivars with diploid resource (2n = 2x = 24). The total rate of variation for Hassani (japonica) was 13.7% including 10.8% for changes in chromosome number (ploidy levels and aneuploids) and 2.9% for chromosomal aberrations such as deficiency. A total rate of variation for Sadridomsiah (indica) was 15.6% including 12.4% for change in numbers and 3.2% for aberrations in construction. Most of important cytological mutations were observed in various chromosomes among regenerated plants of cultivars. Neither nullisomics nor inversions were distinguished in any samples.  相似文献   

17.
To establish a cytoplasmic male-sterile/restored fertility (cms-Rf) system for F1 seed production in Brassica napus, we transferred a gene from fertillity restored radish to B. napus by protoplast fusion. X-irradiated protoplasts, isolated from shoots of Raphanus sativus cv Kosena (Rf line), were fused with iodoacetamide-treated protoplasts of a B. napus cms cybrid. Among 300 regenerated plants, six were male-fertile. The fertile plants were characterized for petal color, chromosome number and the percentage of viable pollen grains. Three fertile plants had aneuploid chromosome numbers and white or cream petals, which is a dominant marker in radish. Of these three plants, one which had 2n = 47 chromosomes and white petals was used for further backcrosses. After two backcrosses, chromosome number and petal color became identical to that of B. napus. No female sterility was observed in the BC3 generations.  相似文献   

18.
Intergeneric crosses were made betweem Psathyrostachys huashanica (2n=14, NN)and two Roegneria species, namely, R. ciliaris (2n=28, SSYY), and R. tsukushiensis (2n=42, SSHHYY). Two combinations of P. huashanica crossed with R. ciliaris and R. tsukushiensis produced adult hybrid plants. Although completely sterile, the hybrid plants developed rather vigorously, and were morphologically intermediate between the two parents.Two spikelets per node in part were observed in hybrids, which evidently came from P. huashanica. The chromosome configurations of R. ciliaris × P. huashanica and R. tsukushiensis × P. huashanica were 20.73 I+0.318 II, 24.80 I+1.578 II+0. 012 III, respectively. Polypolar division was found at anaphase I in meiosis of two hybrids. Abnormal meiosis in two hybrids was observed. The chromosome pairing indicates that there is only a little chromosome homoeology between “N” genome of P. huashanicaand “S”, “Y” or “H” genomes of R. ciliaris and R. tsukushiensis.  相似文献   

19.
Two populations derived respectively from callus tissue of sugarcane clones H 37–1933 and H 50–7209 were studied for differences in morphology, chromosome number, and four enzyme systems. Variations observed in morphological characteristics were not directly correlated with differences in enzyme systems. Greater variation in both respects was observed in plants from the H 50–7209 (a chromosomal mosaic) population than in plants from the H 37–1933 (chromosomally stable) population. Among 37 plants of H 50–7209, all but one had cell-to-cell variation in chromosome number. In all but one of these 36 variable plants, the overall range was 2n = 94–120. The exceptional plant had a range of 2n = 17–118. Among 8 plants of H 37–1933, all had 2n = ca. 106.  相似文献   

20.
Jin S  Mushke R  Zhu H  Tu L  Lin Z  Zhang Y  Zhang X 《Plant cell reports》2008,27(8):1303-1316
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), chromosomal number counting, and flow cytometric analysis. The roles of RAPD and SSR markers in detecting somaclonal variation of cotton (Gossypium hirsutum L.) were evaluated. Two cluster analyses were performed to express, in the form of dendrograms, the relationships among the hormone combinations and the genetic variability. Both DNA-based techniques were able to amplify all of the cell clones and regenerated plantlets genomes and relative higher genetic variation could be detected in the culture type with 2, 4-D and kinetin hormone combination. The result suggested that 2, 4-D and kinetin hormone combination could induce relative high somaclonal variation and RAPD and SSR markers are useful in detecting somaclonal variation of regenerated cotton plants via somatic embryogenesis. Chromosome number counting and flow cytometry analysis revealed that the number of chromosomes and ploidy levels were nearly stable in all regenerated plants except two regenerated plantlets (lost 4 and 5 chromosomes, respectively) which meant that cytological changes were not correlated with the frequency of RAPD and SSR polymorphisms. This result also might mean that the cell lines with variation of chromosome numbers were difficult to regenerate plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号