首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Developmental cell》2022,57(5):624-637.e4
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
Joo JI  Oh TS  Kim DH  Choi DK  Wang X  Choi JW  Yun JW 《Proteomics》2011,11(8):1429-1448
One of the major questions in the field of obesity is why some humans become obese (obesity prone, OP) and others resist the development of obesity (obesity resistant, OR) when exposed to a high-calorie diet, which has not been completely studied. Therefore, in the present study, in order to gain insight into the molecular mechanisms underlying this propensity, we have performed a comparative analysis of protein expression profiles in white adipose tissue (WAT) and brown adipose tissue (BAT) of rats fed a high-fat diet by 2-DE and MALDI-TOF-MS. Protein mapping of homogenates revealed significant alterations to a number of proteins; 60 and 70 proteins were differentially regulated in BAT and WAT, respectively. For careful interpretation of proteomic results, we categorized the identified proteins into two groups by analysis of both average spot density of pooled six rat adipose tissues and individual spot density of each adipose tissue of six rats as a function of body weight. One of the most striking findings of this study was that significant changes of Ehd1 and laminin receptor in BAT as well as antiquitin, DJ-1 protein, and paraoxonase 2 in WAT were found for the first time in obese rats. In addition, we confirmed the increased expression of some thermogenic enzymes and decreased lipogenic enzymes in adipose tissues of OR rats by immunoblot analysis. To our knowledge, this is the first proteomic study of profiling of protein modulation in OP and OR rats, thereby providing the first global evidence for different propensities to obesity between OP and OR rats.  相似文献   

6.
The SmN protein is closely related to the constitutively expressed RNA splicing protein SmB but is expressed only in brain and heart tissue. Mice which lack expression of SmN die shortly after birth suggesting a critical role for this protein possibly in the regulation of neuronal-specific alternative splicing events. We show here however that the neuronal-specific alternative splicing of the RNAs encoding several different classes of protein proceeds normally in mice lacking SmN expression. The potential role of SmN and the reasons for the lethal effect observed in non-expressing mice are discussed.  相似文献   

7.
Bioinformatics of alternative splicing and its regulation   总被引:3,自引:0,他引:3  
The sequencing of the human genome and ensuing wave of data generation have brought new light upon the extent and importance of alternative splicing as an RNA regulatory mechanism. Alternative splicing could potentially explain the complexity of protein repertoire during evolution, and defects in the splicing mechanism are responsible for diseases as complex as cancer. Among the challenges that rise in light of these discoveries are cataloguing splice variation in the human and other eukaryotic genomes, and identifying and characterizing the splicing regulatory elements that control their expression. Bioinformatics efforts tackling these two questions are just at the beginning. This article is a survey of these methods.  相似文献   

8.
9.
10.
11.
12.
13.
本研究旨在基于已获得的第三代纳米孔全长转录组数据对东方蜜蜂微孢子虫Nosema ceranae基因的可变剪接(alternative splicing,AS)和可变多聚腺苷酸化(alternative polyadenylation,APA)进行分析.通过Astalavista软件鉴定东方蜜蜂微孢子虫基因的AS事件类型...  相似文献   

14.
Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface‐coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co‐cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self‐assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co‐cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4‐week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long‐term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies. Biotechnol. Bioeng. 2013; 110: 1430–1443. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.  相似文献   

17.
The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli (“browning process”). Brown-like adipocytes that appear in white fat depots have been called “brite” (from brown-in-white) or “beige” adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

18.
19.
RBFOX1 and RBFOX2 are alternative splicing factors that are predominantly expressed in the brain and skeletal muscle. They specifically bind the RNA element UGCAUG, and regulate alternative splicing positively or negatively in a position-dependent manner. The molecular basis for the position dependence of these and other splicing factors on alternative splicing of their targets is not known. We explored the mechanisms of RBFOX splicing activation and repression using an MS2-tethering assay. We found that the Ala/Tyr/Gly-rich C-terminal domain is sufficient for exon activation when tethered to the downstream intron, whereas both the C-terminal domain and the central RRM are required for exon repression when tethered to the upstream intron. Using immunoprecipitation and mass spectrometry, we identified hnRNP H1, RALY, and TFG as proteins that specifically interact with the C-terminal domain of RBFOX1 and RBFOX2. RNA interference experiments showed that hnRNP H1 and TFG modulate the splicing activity of RBFOX1/2, whereas RALY had no effect. However, TFG is localized in the cytoplasm, and likely modulates alternative splicing indirectly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号