首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review covers the unique catalytic and molecular properties of three proteolytic enzymes and a glycosidase from Aspergillus. An aspartic proteinase from A. saitoi, aspergillopepsin I (EC 3.4.23.18), favors hydrophobic amino acids at P1 and P'1 like gastric pepsin. However, aspergillopepsin I accommodates a Lys residue at P1, which leads to activation of trypsinogens like duodenum enteropeptidase. Substitution of Asp76 to Ser or Thr and deletion of Ser78, corresponding to the mammalian aspartic proteinases, cathepsin D and pepsin, caused drastic decreases in the activities towards substrates containing a basic amino acid residue at 1. In addition, the double mutant T77D/G78(S)G79 of porcine pepsin was able to activate bovine trypsinogen to trypsin by the selective cleavage of the K6-I7 bond of trypsinogen. Deuterolysin (EC 3.4.24.39) from A. oryzae, which contains 1g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. It was concluded that His128, His132, and Asp164 provide the Zn2+ ligands of the enzyme according to a 65Zn binding assay. Deuterolysin is a member of a family of metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand. Acid carboxypeptidase (EC 3.4.16.1) from A. saitoi is a glycoprotein that contains both N- and O-linked sugar chains. Site-directed mutagenesis of the cpdS, cDNA encoding A. saitoi carboxypeptidase, was cloned and expressed. A. saitoi carboxypeptidase indicated that Ser153, Asp357, and His436 residues were essential for the enzymic catalysis. The N-glycanase released high-mannose type oligosaccharides that were separated on HPLC. Two, which had unique structures of Man10 GlcNAc2 and Man11GlcNAc2, were characterized. An acidic 1,2-alpha-mannosidase (EC 3.2.1.113) was isolated from the culture of A. saitoi. A highly efficient overexpression system of 1,2-alpha-mannosidase fusion gene (f-msdS) in A. oryzae was made. A yeast mutant capable of producing Man5GlcNAc2 human-compatible sugar chains on glycoproteins was constructed. An expression vector for 1,2-alpha-mannosidase with the "HDEL" endoplasmic reticulum retention/retrieval tag was designed and expressed in Saccharomyces cerevisiae. The first report of production of human-compatible high mannose-type (Man5GlcNAc2) sugar chains in S. cerevisiae was described.  相似文献   

3.
4.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

5.
Saccharomyces cerevisiae Man9-alpha-mannosidase, responsible for trimming Man9GlcNAc2 in the endoplasmic reticulum to Man8GlcNAc2, the substrate for oligosaccharide elongation, has been purified to homogeneity from stabilized microsomal membranes without employing autolytic digestion. The activity was solubilized by the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethyl ammonio]-1-propanesulphonate (CHAPS), whose presence was necessary for maximal activity. Purification included Q-Sepharose ion-exchange chromatography, preparative isoelectric focusing and HPLC gel filtration on TSK 3000 matrix. Overall purification from post-nuclear supernatants was estimated to be 110,000-fold with a 50% recovery of activity. The purified enzyme hydrolysed Man9GlcNAc1,2 from thyroglobulin or oligosaccharide-lipid, but not invertase Man9GlcNAc, Man1 alpha 2Man1 alpha OCH3 or p-nitrophenyl-alpha-D-mannopyranoside. Conversion of thyroglobulin Man9GlcNAc to Man8GlcNAc was linear with time and enzyme concentration, with an apparent Km of 0.2 mM and a specific activity of 220 IU/mg. Glc3Man9GlcNAc2 from oligosaccharide-lipid was as good a substrate as Man9GlcNAc, but the lipid-linked Man7GlcNAc2 isomer was hydrolysed at only 10% of this rate. Hydrolysis of defined isomers of IgM and bovine thyroglobulin Man6,7,8GlcNAc indicated that, for maximal alpha 1,2-mannosidase activity, only the alpha 1,2-linked terminal mannoses on the alpha 3 branch of the Man9GlcNAc precursor were dispensable. Isomers lacking the terminal alpha 1,2-linked mannose on the alpha 6 branch were hydrolysed at only approximately 10% of the maximal rate. The enzyme exhibited a pI of 5.3 and a pH optimum at 6.5. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the absence of reducing agents gave a single sharp band at 66 kDa, while in the presence of beta-mercaptoethanol equimolar amounts of two peptides, one of 44 kDa and one of 23 kDa, were obtained. Sizing on Sephacryl SF300, Superose 12 and TSK 3000 provided a holoenzyme mol. wt of 60-68 kDa, indicating that the isolated active form of the Man9-alpha-mannosidase was composed of one each of the sulphydryl-bonded dissimilar peptides. The enzyme bound to concanavalin A (ConA)-Sepharose and was eluted with alpha-methylmannoside, indicating the presence of high-mannose oligosaccharides. The Man9-alpha-mannosidase required low levels of Ca2+, which could be removed by EGTA. Activity was restored by Ca2+ or Zn2+, but not by Mg2+ or Mn2+.  相似文献   

6.
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.  相似文献   

7.
UDP-N-Acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) is an essential enzyme in the conversion of high mannose type oligosaccharide to the hybrid or complex type. The full length of the rat GnT-I gene was expressed in the filamentous fungus Aspergillus oryzae. A microsomal preparation from a recombinant fungus (strain NG) showed GnT-I activity that transferred N-acetylglucosamine residue to acceptor heptaose, Man(5)GlcNAc(2). The N-linked sugar chain of alpha-amylase secreted by the strain showed a peak of novel retention on high performance liquid chromatography that was same as a reaction product of in vitro GnT-1 assay. The peak of oligosaccharide disappeared on HPLC after beta-N-acetylglucosaminidase treatment. Mass analysis supported the presence of GlcNAcMan(5)GlcNAc(2) as a sugar chain of alpha-amylase from strain NG. Chimera of GnT-I with green fluorescent protein (GFP) showed a dotted pattern of fluorescence in the mycelia, suggesting localization at Golgi vesicles. We concluded that GnT-1 was functionally expressed in A. oryzae cells and that N-acetylglucosamine residue was transferred to N-glycan of alpha-amylase in vivo. A. oryzae is expected to be a potential host for the production of glycoprotein with a genetically altered sugar chain.  相似文献   

8.
A soluble form of ribophorin I (RI(332)) is rapidly degraded in Hela and Chinese hamster ovary (CHO) cells by a cytosolic proteasomal pathway, and the N-linked glycan present on the protein may play an important role in this process. Specifically, it has been suggested that endoplasmic reticulum (ER) mannosidase I could trigger the targeting of improperly folded glycoproteins to degradation. We used a CHO-derived glycosylation-defective cell line, MadIA214, for investigating the role of mannosidase(s) as a signal for glycoprotein degradation. Glycoproteins in MadIA214 cells carry truncated Glc(1)Man(5)GlcNAc(2) N-glycans. This oligomannoside structure interferes with protein maturation and folding, leading to an alteration of the ER morphology and the detection of high levels of soluble oligomannoside species caused by glycoprotein degradation. An HA-epitope-tagged soluble variant of ribophorin I (RI(332)-3HA) expressed in MadIA214 cells was rapidly degraded, comparable to control cells with the complete Glc(3)Man(9)GlcNAc(2) N-glycan. ER-associated degradation (ERAD) of RI(332)-3HA was also proteasome-mediated in MadIA214 cells, as demonstrated by inhibition of RI(332)-3HA degradation with agents specifically blocking proteasomal activities. Two inhibitors of alpha1,2-mannosidase activity also stabilized RI(332)-3HA in the glycosylation-defective cell line. This is striking, because the major mannosidase activity in the ER is the one of mannosidase I, specific for a mannose alpha1,2-linkage that is absent from the truncated Man(5) structure. Interestingly, though the Man(5) derivative was present in large amounts in the total protein pool, the two major species linked to RI(332)-3HA shortly after synthesis consisted of Glc(1)Man(5 )and Man(4), being replaced by Man(4 )and Man(3) when proteasomal degradation was inhibited. In contrast, the untrimmed intermediate of RI(332)-3HA was detected in mutant cells treated with mannosidase inhibitors. Our results unambiguously demonstrate that an alpha1,2-mannosidase that is not ER mannosidase I is involved in ERAD of RI(332-)3HA in the glycosylation-defective cell line, MadIA214.  相似文献   

9.
Recently, asparagine-linked oligosaccharides (N-glycans) have been found to play a pivotal role in glycoprotein quality control in the endoplasmic reticulum (ER). In order to screen proteins interacting with N-glycans, we developed affinity chromatography by conjugating synthetic N-glycans on sepharose beads. Using the affinity beads with the dodecasaccharide Glc(1)Man(9)GlcNAc(2), one structure of the N-glycans, a 75-kDa protein, was isolated from the membranous fraction including the ER in Aspergillus oryzae. By LC-MS/MS analysis using the A. oryzae genome database, the protein was identified as one (AO090009000313) sharing similarities with calnexin. Further affinity chromatographic experiments suggested that the protein specifically bound to Glc(1)Man(9)GlcNAc(2), similarly to mammalian calnexins. We designated the gene AoclxA and expressed it as a fusion gene with egfp, revealing the ER localization of the AoClxA protein. Our results suggest that our affinity chromatography with synthetic N-glycans might help in biological analysis of glycoprotein quality control in the ER.  相似文献   

10.
In order to facilitate the purification of 1,2-alpha-mannosidase from an enzyme product of Aspergillus oryzae, we have devised a rapid and simple procedure. A partially purified enzyme preparation obtained from the A. oryzae enzyme product, by means of ammonium sulfate fractionation followed by CM-Sephadex C-50 chromatography, was subjected to affinity chromatography with baker's yeast mannan gel as an adsorbent. 1,2-alpha-Mannosidase was retarded and well separated from the major protein peak on the affinity column. After a second affinity chromatography under the same conditions, 1,2-alpha-mannosidase was finally purified 7,500-fold with a 22.9% yield. The enzyme preparation thus obtained was quite suitable for the structural analysis of glycoconjugates.  相似文献   

11.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

12.
Protein glycosylation pathways are relatively poorly characterized in insect cells. As part of an overall effort to address this problem, we previously isolated a cDNA from Sf9 cells that encodes an insect alpha1,2-mannosidase (SfManI) which requires calcium and is inhibited by 1-deoxymannojirimycin. In the present study, we have characterized the substrate specificity of SfManI. A recombinant baculovirus was used to express a GST-tagged secreted form of SfManI which was purified from the medium using an immobilized glutathione column. The purified SfManI was then incubated with oligosaccharide substrates and the resulting products were analyzed by HPLC. These analyses showed that SfManI rapidly converts Man(9)GlcNAc(2)to Man(6)Glc-NAc(2)isomer C, then more slowly converts Man(6)GlcNAc(2)isomer C to Man(5)GlcNAc(2). The slow step in the processing of Man(9)GlcNAc(2)to Man(5)GlcNAc(2)by SfManI is removal of the alpha1,2-linked mannose on the middle arm of Man(9)GlcNAc(2). In this respect, SfManI is similar to mammalian alpha1,2-mannosidases IA and IB. However, additional HPLC and(1)H-NMR analyses demonstrated that SfManI converts Man(9)GlcNAc(2)to Man(5)GlcNAc(2)primarily through Man(7)GlcNAc(2)isomer C, the archetypal Man(9)GlcNAc(2)missing the lower arm alpha1,2-linked mannose residues. In this respect, SfManI differs from mammalian alpha1,2-mannosidases IA and IB, and is the first alpha1,2-mannosidase directly shown to produce Man(7)GlcNAc(2)isomer C as a major processing intermediate.  相似文献   

13.
14.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

15.
In vitro incubation of the oligomannosyl oligosaccharides Man9GlcNAc and Man5GlcNAc with isolated disrupted lysosomes yields different oligosaccharide isomers resulting from mannosidase hydrolysis. These isomers were isolated by HPLC and characterized by 1H-NMR spectroscopy. The first steps of the degradation involve an (alpha 1-2)mannosidase activity and lead to the formation of one Man8GlcNAc, one Man7GlcNAc, two Man6GlcNAc and two Man5GlcNAc isomers. These reactions do not require Zn2+ as activator. On the other hand, the following steps, which lead to the formation of Man3GlcNAc and Man2GlcNAc, are Zn2(+)-dependent. This process is characterized by the preferential action of an (alpha 1-3)mannosidase activity, and the formation of Man(alpha 1-6)Man(alpha 1-6)Man(beta 1-4)GlcNAc and Man(alpha 1-6)Man(beta 1-4)GlcNAc. Therefore, the digestion of Man9GlcNAc inside the lysosome appears to follow a very specific pathway, since only nine intermediate compounds can be identified instead of the 38 possible isomers. Our results are consistent both with the existence of several specific enzymes for alpha 1-2, alpha 1-3 and alpha 1-6 linkages, and with the presence of a unique enzyme whose specificity would be dependent either on Zn2+ or on the spatial conformation of the glycan. Nevertheless, previous work on the structural analysis of oligosaccharides excreted in the urine of patients suffering from mannosidosis, demonstrates the absence of the core alpha 1-6-linked mannosyl residue in the major storage product derived from oligomannosyl oligosaccharides. This observation indicates the presence of a specific (alpha 1-6)mannosidase form, unaffected in mannosidosis.  相似文献   

16.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

17.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   

18.
19.
Rat liver Golgi membranes contain two alpha 1,2-specific mannosidases (IA and IB) (Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W., and Touster, O. (1982) J. Biol. Chem. 257, 3660-3668). Mannosidase IA has now been purified to apparent homogeneity by detergent extraction and (NH4)2SO4 precipitation, followed by Sephacryl S-300, ion-exchange, and hydroxylapatite chromatography. The enzyme was homogeneous by nondenaturing polyacrylamide gel electrophoresis with different gel concentrations, and Ferguson plot analysis indicated an Mr of 230,000 for the native enzyme. Although electrophoresis under denaturing conditions generally gave a subunit Mr of 57,000, electrophoresis of less than 1 microgram of protein yielded a faint doublet of Mr 57,000 and 58,000. Thus, the enzyme appears to be a tetramer with four very similar subunits. The enzyme bound to concanavalin A-Sepharose 4B only when it was kept in contact with the lectin for 16 h. Endoglycosidase H treatment resulted in loss of its binding to the lectin, without leading to a detectable change in the size of the enzyme subunit. On electrophoretic gels, the enzyme gave a faint positive stain with periodic acid-Schiff's base. The enzyme contained about 0.9% hexose by direct analysis. It did not bind to affinity resins specific for neuraminic acid, galactose, or N-acetylglucosamine. All these studies suggest that the enzyme is a glycoprotein containing only one or two clusters of high mannose oligosaccharide. Mannosidase IA is active toward oligosaccharides containing alpha 1,2-linked mannosyl residues. [3H]Man9GlcNAc, [3H] Man8GlcNAc, [3H]Man7GlcNAc, and [3H]Man6GlcNAc are good substrates. Man9GlcNAc, the best substrate, yields Man8, Man7, and Man6 derivatives with structures suggesting that the sequence of release of mannose residues is rather specific. Immunoprecipitation studies using polyclonal antibody (IgG) prepared against homogeneous mannosidase IA cross-reacted with mannosidase IB, a result suggesting that these two enzymes share antigenic determinants. However, no cross-reactivity was observed with rat liver cytosolic and lysosomal alpha-D-mannosidases or with Golgi mannosidase II.  相似文献   

20.
蛋白的糖基化对蛋白的活性、高级结构及功能都有重要的影响。酵母表达的糖蛋白不同于哺乳动物表达的杂合型或复杂型糖蛋白,而是高甘露糖型或过度甘露糖化糖蛋白。在前期成功敲除毕赤酵母α-1,6-甘露糖转移酶(Och1p)基因、阻断毕赤酵母过度糖基化,获得毕赤酵母过度糖基化缺陷菌株GJK01 (ura3、och1) 的基础上,通过表达不同物种来源的α-1,2-甘露糖苷酶I (MDSI) 的活性区与酵母自身定位信号的融合蛋白,并通过DSA-FACE (基于DNA测序仪的荧光辅助糖电泳) 分析筛选报告蛋白HSA/GM-CSF (人血清白蛋白与粒细胞-巨噬细胞集落刺激因子融合蛋白) 的糖基结构,发现当编码酿酒酵母α-1,2-甘露糖苷酶 (MnsI) 基因的内质网定位信号与带有完整C-端催化区的拟南芥MDSI基因融合表达时,毕赤酵母工程菌株能够合成Man5GlcNAc2哺乳动物甘露糖型糖蛋白。这为在酵母体内合成类似于哺乳动物杂合型或复杂型糖基化修饰的糖蛋白奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号