首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

2.
Predators can reduce prey population densities by driving them to undertake costly defences. Here, we report on a remarkable example of induced antipredator defence in spider mites that enhances the risk to rainstorms. Spider mites live on the undersides of host plant leaves and usually oviposit on the leaf undersurface. When they are threatened by predatory mites, they oviposit on three-dimensional webs to avoid egg predation, although the cost of ovipositing on webs has not yet been clearly determined. We prepared bean plants harbouring spider mite (Tetranychus kanzawai) eggs on either leaf surfaces or webs and exposed them to rainstorms outdoors. We found that fewer eggs remained on webs than on leaf surfaces. We then examined the synergistic effect of wind and rain by simulating both in the laboratory. We conclude that ovipositing on webs comes at a cost, as eggs are washed off the host plants by wind and rain. This may explain why spider mite populations decrease drastically in the rainy season, although they inhibit leaf undersides where they are not directly exposed to rainfall.  相似文献   

3.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), are competitors with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), for plant resources and potential predators on spider mites when the opportunity arises. Which interaction predominates may depend on relative population densities and individual species’ responses to the plants on which they co‐occur. We examined interactions between populations of thrips and spider mites on several cultivars of two bedding plants: impatiens (Impatiens wallerana Hook.f) cultivars ‘Impulse Orange’ and ‘Cajun Carmine’, and ivy geranium [Pelargonium peltatum (L.) L’Her ex Aiton] cultivars ‘Sybil Holmes’ and ‘Amethyst 96’. Four combinations of thrips and mite numbers were studied: thrips alone, mites alone, and two densities of thrips and mites together. We compared population numbers after 4 weeks. Overall, mite numbers increased more rapidly than thrips did, but both species increased more rapidly on impatiens than on ivy geraniums. Between impatiens cultivars, thrips and mites increased more slowly on ‘Cajun Carmine’ (i.e., it was more resistant) than on ‘Impulse Orange’. On ivy geraniums, spider mites increased more slowly on ‘Sybil Holmes’ than on ‘Amethyst 96’ but the reverse was the case for thrips. Regardless of plant species or cultivar, thrips had a strong negative effect on spider mites whenever they co‐occurred, suppressing mite population growth by around 50% compared to when mites were alone. However, the effect of spider mites on western flower thrips depended on the quality of the plant species. On impatiens, thrips co‐occurring with spider mites increased slightly more than thrips alone did, while on ivy geranium mites had a small negative effect on thrips. Contrary to expectations, thrips had a larger negative impact on spider mites on plants that were more susceptible to thrips than they did on plants more resistant to thrips. We suggest that host plants mediate the interaction between an omnivore and its herbivorous prey not only by altering individual diet choice but by changing the relative population dynamics of each species.  相似文献   

4.
The diet choice of omnivores feeding on two adjacent trophic levels (either plants and herbivores or herbivores and predators) has been studied extensively. However, omnivores usually feed on more than two trophic levels, and this diet choice and its consequences for population dynamics have hardly been studied. We report how host-plant quality affects the diet choice of western flower thrips feeding on three trophic levels: plants (cucumber or sweet pepper), eggs of spider mites and eggs of a predatory mite that attacks spider mites. Spider mites feed on the same host plants as thrips and produce a web that hampers predator mobility. To assess the indirect effects of spider mites on predation by thrips, the thrips were offered spider-mite eggs and predatory-mite eggs on cucumber or sweet pepper leaf discs that were either clean, damaged by spider mites but without spider-mite web, or damaged and webbed. We show that, overall, thrips consumed more eggs on sweet pepper, a plant of low quality, than on cucumber, a high quality host plant. On damaged and webbed leaf discs (mimicking the natural situation), thrips killed more predator eggs than spider-mite eggs on sweet pepper, but they killed equal numbers of eggs of each species on cucumber. This is because web hampered predation on spider-mite eggs by thrips on sweet pepper, but not on cucumber, whereas it did not affect predation on predatory-mite eggs. We used the data obtained to parameterize a model of the local dynamics of this system. The model predicts that total predation by the omnivore has little effects on population dynamics, whereas differential attack of predator eggs and spider-mite eggs by the omnivore has large effects on the dynamics of both mite species on the two host plants.  相似文献   

5.
Efficacy of rosemary, Rosmarinus officinalis L., essential oil was assessed against twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), as well as effects on the tomato, Lycopersicum esculatum Mill., host plant and biocontrol agents. Laboratory bioassay results indicated that pure rosemary oil and EcoTrol (a rosemary oil-based pesticide) caused complete mortality of spider mites at concentrations that are not phytotoxic to the host plant. The predatory mite Phytoseiulus persimilis Athias-Henriot is less susceptible to rosemary oil and EcoTrol than twospotted spider mite both in the laboratory and the greenhouse. Rosemary oil repels spider mites and can affect oviposition behavior. Moreover, rosemary oil and rosemary oil-based pesticides are nonpersistent in the environment, and their lethal and sublethal effects fade within 1 or 2 d. EcoTrol is safe to tomato foliage, flowers, and fruit even at double the recommended label rate. A greenhouse trial indicated that a single application of EcoTrol at its recommended label rate could reduce a twospotted spider mite population by 52%. At that rate, EcoTrol did not cause any mortality in P. persimilis nor did it affect their eggs. In general, EcoTrol was found to be a suitable option for small-scale integrated pest management programs for controlling twospotted spider mites on greenhouse tomato plants.  相似文献   

6.
Predators and plant resistance may act together to control herbivorous arthropod populations or antagonistically, which would reduce the control of pest populations. In a field experiment we enhanced predation by adding simulated leaf domatia to plants. Leaf domatia are small structures that often harbor predaceous arthropods that are potentially beneficial to the plant. We also manipulated host plant quality by inducing resistance with controlled, early season exposure of seedlings to spider mite herbivory.
Our manipulations had profound consequences for the natural community of arthropods that inhabited the plants. Leaf domatia had a direct positive effect on abundances of two species of bugs and one species of thrips, all of which are largely predators of herbivores. On leaves with domatia, each of the predators was found inside the domatia two to three times more often than outside the domatia. Eggs of predaceous bugs inside leaf domatia were protected from parasitism compared to eggs outside the domatia. The positive effects of leaf domatia on predator abundances were associated with reduced populations of herbivorous spider mites, aphids, and whiteflies. Plants with experimental leaf domatia showed significantly enhanced reproductive performance.
Induced resistance also affected the community of arthropods. Of the abundant predators, all of which also fed on the plant, only minute pirate bugs were negatively affected by induced resistance. Populations of herbivorous spider mites and whiteflies were directly and negatively affected by induction. In contrast, aphid populations were higher on plants with induced resistance compared to uninduced plants. Effects of induced resistance and domatia were additive for each of the predators and for aphids. However, spider mite and whitefly populations were not suppressed further by employing both induced resistance and domatia compared to each strategy alone. Our manipulations suggest that plant defense strategies can have positive effects on some species and negative effects on others. Negative effects of “resistance traits” on predators and positive effects on some herbivores may reduce the benefits of constitutive expression of resistance traits and may favor inducible defense strategies. Multiple plant strategies such as inducible resistance and morphological traits that aid in the recruitment of predators of herbivores may act together to maximize plant defenses, although they may also be redundant and not act additively.  相似文献   

7.
Eight cultivars of the ornamental crop Gerbera jamesonii Bolus (Asteraceae) were compared in host plant suitability for the two spotted spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). This was done by determining the intrinsic rate of population increase, rm, of spider mites on leaf discs of plants from each of the cultivars. Large differences in rm values were found, ranging from 0.088/day on cultivar Bianca to 0.242/day on cultivar Sirtaki. This variation in rm was mainly caused by differences in developmental time of the spider mites.We assessed the performance of spider mites on young and old leaves of the two gerbera cultivars Bianca and Sirtaki. On Sirtaki the spider mites had a shorter developmental time and higher peak oviposition rate on young leaves than on old leaves. However, on Bianca such an effect was not found.We also determined the performance of two spider mite strains on the resistant gerbera cultivar Bianca. We compared the rm of a strain that had been reared on this cultivar for approximately half a year with the rm of a strain that was reared on bean. The rm of the strain that was reared on cultivar Bianca increased to 0.208/day, which is however still substantially lower than the rm on the susceptible cultivar Sirtaki.  相似文献   

8.
Among tetranychid spider mites and their phytoseiid predators, the evolution of pesticide resistance is a common event. In most cases, resistance is based on a single dominant or semidominant gene. However, polygenic, less-stable resistance often develops under laboratory selection. More rapid development of pesticide resistance in spider mites and predatory mites than among other arthropods might partly be due to their arrhenotokous reproduction. For both groups of mites, little study has been done on population genetic factors influencing pesticide resistance. A few studies have focussed on ecological factors. An important ecological factor influencing resistance evolution is the level of immigration of susceptible individuals into treated habitats. Spider mites and predatory mites both tend to reside in treated habitats at high levels and to immigrate at only modest levels from untreated habitats. This favors rapid resistance development. Another factor contributing to rapid resistance evolution in both mite groups is their rapid reproductive rate. A food-limitation factor may limit resistance evolution under field conditions more in predatory mites than spider mites. After treatment by a pesticide, spider mites have an unlimited food source, whereas predatory mites have a decimated food source (their prey), which leads to reduced reproduction, starvation, or migration. Because of the common occurrence of resistance among both mite groups, a strategy of resistance management is often feasible for them. Case histories of IPM where the population dynamics and genetics of pesticide resistance of tetranychid and phytoseiid mites have been considered are discussed. The overall conclusion is that greater understanding of the population genetics and ecology of these species will provide for improved systems of resistance management and IPM.  相似文献   

9.
Spatial and temporal characteristics of host plants can influence the population biology of the herbivores feeding on them. In this study, I examined the effect of variation in host plant characteristics on the development of acaricide resistance in the two-spotted spider mite Tetranychus urticae, a widely distributed agricultural pest. This investigation examined the geographic variation in the degree of resistance to two new types of acaricide, pyridaben and fenpyroximate. From mortality tests at field-level concentrations of the acaricides, many populations collected from fruit trees and roses had a high frequency of resistant individuals for acaricides while almost all populations collected from herbaceous crops had low frequencies of resistant individuals. These results, combined with those from a previous allozyme study, indicate that patch size and persistence of host plants regulate the population structure of the mites including gene flow between populations and, by extension, the development of acaricide resistance.  相似文献   

10.
Several tritrophic systems are characterized by local over-exploitation of the food source. Interactions between predatory mites, spider mites and their host plants are an example of such systems: either the spider mites over-exploit local patches of host plants or the spider mites are exterminated by predatory mites. It is often stated that modelling the overall population dynamics of such systems in a realistic way would soon lead to an unmanageable edifice. We advocate, however, the use of physiologically structured population models as a both general and formal mathematical framework. The advantage is that analytically tractable models may be obtained from the complex ‘master’ model by time-scale arguments or special choices of model ingredients. In this way a network of models can be derived, each concentrating on a particular aspect, all inadequate to cover the entire spectrum, but together (we hope) providing a coherent set of insights the relative importance of which can be assessed by computer experiments on the ‘master’ model. In this paper a rather realistic model of predator/prey interactions in an ensemble of host-plant patches is presented and, as an example of our approach, some special cases are derived from that model. Their analysis provided some first, useful insights. It is shown that prolonged duration of the prey-dispersal phase and prey dispersal from predator (-invaded prey) patches may result in a stable steady state, whereas a humped plant-production function may — under certain conditions — result in two stable steady states.  相似文献   

11.

Sex dimorphism is ubiquitous in the animal kingdom and can be influenced by environmental factors. However, relatively little is known about how the degree and direction of sex difference vary with environmental factors, including food quality and temperature. With the spider mites from the family Tetranychidae as subjects, the sex difference of life-history traits in responses to host plant and temperature were determined in this meta-analytic review. Across the 42 studies on 26 spider mite species (N?=?8057 and 3922 for female and male mites, respectively), female spider mites showed longer developmental duration than the males in all except two species. The direction of sex difference in development was consistent regardless of temperature and host plant. The 16 spider mite species in 33 studies generally showed female-biased longevity, with an overall effect size of 0.6043 [95%CI = 0.4054–0.8031]. Host plant significantly influenced the sex difference in longevity, where the males lived longer than females below 22.5 ℃, but the reverse was true at higher and fluctuating temperature. Host plant also influenced the magnitude of sex difference in longevity, with females living longer than males when reared on herbs but not on trees. This study indicated that life-history traits are highly variable between sexes under temperature and host plant influence, highlighting that environmental conditions can significantly shape the direction and magnitude of sexual dimorphism of life-history traits.

  相似文献   

12.
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.

Mites can evolve highly efficient detoxification-based adaptation in approximately 25 generations on an initially unfavorable plant host, revealing that specialization can occur within the ecological timescale.  相似文献   

13.
Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.  相似文献   

14.
It has been suggested that previous infection by a vascular fungus causes induced resistance against two-spotted spider mites. To test the generality of this phenomenon, a series of experiments was carried out using two lines of tomato, differing only in resistance againstFusarium. In addition, tests were done in order to see whether the defense response against the fungus also affects the phytophagous mite directly. Inoculation of tomato plants with a vascular fungus (Fusarium oxysporum f.sp.lycopersici race 1) prior to infestation with spider mites caused a decrease in the rate of oviposition of two-spotted spider mites (Tetranychus urticae) on aFusarium-susceptible line, but only when plants were moderately to severely wilted. Spider mite oviposition did not change significantly of a previously inoculatedFusarium-resistant line.AsFusarium causes vascular occlusion and wilting of the plants, drought stress was experimentally induced to determine its influence on the reduction of oviposition. Drought caused a significant reduction in spider mite oviposition. We conclude that the effect of previousFusarium-inoculation on spider mite oviposition is primarily due to the fungus affecting the quality of the host plant (including the effect it may have on the composition of defensive compounds), rather than due to the stimulation of the defense system of the plant. SinceFusarium seals off the xylem vessels, thereby causing wilting of susceptible plants, the reduction in mite oviposition may well be due to drought stress in the leaves, rather than due to the production of phytoalexins.  相似文献   

15.
We examined induction of preference and performance on novel host plants for two laboratory populations of the polyphagous spider mite Tetranychus urticae, with one population adapted to bean and the other population adapted to tomato. We bred four isofemale lines of the bean population only and used them in all the assays. The bean population had a 30% lower fecundity on tomato than on bean, while the tomato population had equal fecundity on both host plants. Acclimation of adult females to the novel host plant for both populations increased acceptability of that novel host but did not increase rejection of the original host. The bean population experienced a 60% benefit and a 30% cost in terms of egg production for acclimating to tomato, thus exemplifying adaptive plasticity. The tomato population showed a 23% benefit for acclimating to bean but no cost. Mites from the bean population that were acclimated to tomato fed more on tomato than did mites that were not acclimated to tomato. When these mites were fed inhibitors of cytochrome P-450 detoxification enzymes, their performance was severely depressed (84%) on tomato but not on bean. However, mites that were fed inhibitors of P-450 enzymes did not reduce their acceptance of tomato as a host. Thus, performance on novel hosts (but not preference) in this species is likely correlated with the induction of detoxifying enzymes. Spider mites are known to form host races rapidly on novel hosts. Induction of preference and physiological acclimation via detoxification enzymes may enhance performance and, thus, strongly contribute to initial stages of host race formation.  相似文献   

16.
捕食螨化学生态研究进展   总被引:1,自引:0,他引:1  
董文霞  王国昌  孙晓玲  陈宗懋 《生态学报》2010,30(15):4206-4212
捕食螨是重要的生物防治因子。早在20世纪70年代就发现了捕食螨的性信息素,许多研究证明植物挥发物在捕食螨向猎物定位过程中发挥着至关重要的作用,影响捕食螨寻找猎物的植物挥发物来源于未受害植物、机械损伤植物、猎物危害植物、非猎物危害植物。人工合成的植物挥发物组分对捕食螨具有引诱作用,但引诱活性低于虫害诱导植物释放的挥发性混合物。捕食螨的饲养条件、饥饿程度、学习与经验行为等会影响捕食螨对植物挥发物的反应。介绍了信息素与植物挥发物对捕食螨的作用,并讨论了目前存在的问题和研究前景。  相似文献   

17.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

18.
19.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

20.
Preadult rearing conditions affected the behavior of dicofol-resistant two-spotted spider mites (Tetranychus urticae). Resistant spider mites reared on dicofol-treated leaves initiated a significantly greater number of feeding bouts on dicofol-treated leaves than did genetically identical spider mites reared on residue-free leaves. Therefore the prior exposure of resistant spider mites resulted in induced feeding preferences that could exacerbate the potential outcome of the resistance by resulting in greater amounts of feeding by resistant individuals on dicofol-treated areas. Since resistant individuals that had not experienced dicofol in their lifetime did not display this feeding preference, avoidance of this phenomenon of induced feeding preference may be an undescribed value of rotations of pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号