首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Summary The high-resolution structure of a dimeric conformer of gramicidin A, a 15-residue polypeptide, has been determined in the mixed-solvent system of benzene and ethanol by 2D NMR techniques. NOEs, coupling constants and hydrogen-bond information were used to generate 744 experimental constraints for the dimer. Stereoassignment of most -methylene groups was achieved by analysis of 3J, d(i,i), dN(i,i) and dN(i+1,i) distances, and consideration of the initial backbone structure determinations. Stereoassignment of several leucine methyl groups was accomplished via a distance geometry/simulated annealing routine, used for structure determination and refinement. The relatively static backbone structure was determined first and held rigid while side-chain conformations were calculated. This procedure is evaluated versus standard NMR structure determination protocols. The backbone is an antiparallel intertwined double helix, with 5.6–5.7 residues per turn, a total dimer length of 36–37 Å, and a pore width of 2.5–3.0 Å (van der Waals to van der Waals). The structure and dynamics of the side chains are discussed in depth, with careful attention for both the convergence of structures and the residual constraint violations per residue. Side-chain positions impart substantial amphipathic character to the helix, which could influence the conformational change that takes place upon membrane insertion of this channel-forming polypeptide.To whom correspondence should be addressed.  相似文献   

2.
The purpose of this study was to screen for peptides that bind herbicides with a chlorinated aniline chemical structure. A tetrapeptide library was constructed using a solid phase split synthesis approach. Peptide beads were suspended in a buffer containing fluorescent-labeled dichloroaniline (DCA) as the bait. Eighteen fluorescent peptide beads were selected which bound to the bait after two rounds of staining screenings. The beads were then stained and suspended in a solution containing an excess of DCA and five quenched peptide beads were subsequently selected that recognized the DCA moiety. The screened peptides had many sequence similarities. The binding affinity of the screened peptides to herbicides was analyzed using surface plasmon resonance (SPR). N′-(3,4-dichlorophenyl)-N,N-dimethylurea [3-(3,4-dichlorophenyl)-1,1-dimethylurea] solution was injected over the peptide immobilized SPR chip. The SPR signal was found to increase in proportion to the DCMU concentration, whereas no signal was obtained from the negative control, 2-(2-methyl-4-chlorophenoxy) propionic acid (MCPP). From these results it is suggested that the screened peptide selectively recognizes the chemical structure of DCA.  相似文献   

3.
Methods have recently been developed to present vast libraries of random peptides on the surface of filamentous phage. To introduce a degree of conformational constraint into random peptides, a library of hexapeptides flanked by cysteine residues (capable of forming cyclic disulfides) was constructed. This library was screened using the platelet glycoprotein, IIb/IIIa, which mediates the aggregation of platelets through binding of fibrinogen. A variety of peptides containing the sequence Arg-Gly-Asp or Lys-Gly-Asp were discovered and synthesized. The cyclic, disulfide-bonded forms of the peptides bound IIb/IIIa with dissociation constants in the nanomolar range, while reduced forms or an analogue in which Ser replaced the Cys residues bound considerably less tightly. These results demonstrate the feasibility for introducing conformational constraints into random peptide libraries and also demonstrates the potential for using phage peptide libraries to discover pharmacologically active lead compounds.  相似文献   

4.
Summary The solution structure of a specific DNA complex of the minimum DNA-binding domain of the mouse c-Myb protein was determined by distance geometry calculations using a set of 1732 nuclear Overhauser enhancement (NOE) distance restraints. In order to determine the complex structure independent of the initial guess, we have developed two different procedures for the docking calculation using simulated annealing in four-dimensional space (4D-SA). One is a multiple-step procedure, where the protein and the DNA were first constructed independently by 4D-SA using only the individual intramolecular NOE distance restraints. Here, the initial structure of the protein was a random coil and that of the DNA was a typical B-form duplex. Then, as the starting structure for the next docking procedure, the converged protein and DNA structures were placed in random molecular orientations, separated by 50 Å. The two molecules were docked by 4D-SA utilizing all the restraints, including the additional 66 intermolecular distance restraints. The second procedure comprised a single step, in which a random-coil protein and a typical B-form DNA duplex were first placed 70 Å from each other. Then, using all the intramolecular and intermolecular NOE distance restraints, the complex structure was constructed by 4D-SA. Both procedures yielded the converged complex structures with similar quality and structural divergence, but the multiple-step procedure has much better convergence power than the single-step procedure. A model study of the two procedures was performed to confirm the structural quality, depending upon the number of intermolecular distance restraints, using the X-ray structure of the engrailed homeodomain-DNA complex.Abbreviations rmsd root-mean-square deviation - NOE nuclear Overhauser enhancement - 4D-SA simulated annealing in four-dimensional space - Myb-R2R3 repeats 2 and 3 of the DNA-binding domain of the c-Myb protein - DNA 16 Myb-specific binding DNA duplex with 16 base pairs - IHDD-C residues 3 to 59 of the C-chain of the engrailed homeodomain-DNA complex - DNA11 DNA duplex with base pairs 9 to 19 of the engrailed homeodomain-DNA complex  相似文献   

5.
Combinatorial peptide libraries have been playing a major role in the search for new drugs, ligands, enzyme substrates, and other specifically interacting molecules. The principal features of these libraries require a versatile repertoire, an easily identifiable tag for each of the library members, a simple method of synthesis, and a compability with the biochemical milieu. Two types of combinatorial libraries are in use: synthetic libraries and biological (mainly phage display) ones. An advantage of the biological libraries is due to the ability of each of the library members to replicate itself and to the fact that they carry their own coding sequences. The uniqueness of filamentous phage is that of its five virion proteins, three can tolerate the insertion of foreign peptides, each in a distinctive manner. The major coat protein, pVIII, is capable of displaying hundreds of peptide copies over the phage virion, pIII can display either one or five copies, and pVI, as opposed to the first two, displays its peptides such that the carboxy terminus is oriented outward. A major drawback of filamentous phage is its size. The length of an intact phage particle is 930 nm and it contains an ssDNA of 6400 bp. 2800 copies of the major coat protein form a “fish scale” cover over most of the virion DNA, whereas five copies of pIII, which has been the major protein used for library display, and five copies of pVI are located at one end of the filamentous virion. There is no doubt that in order to improve the quality of filamentous phage libraries, the size of phage should be drastically reduced. Comprehensive research on the phage life cycle and its structure will lead us to the construction of miniature phage and to other methods that will enable an in vivo expanding of the library repertoire as well as to binding-induced specific clone-proliferation.  相似文献   

6.
Four sets of mixture based nonapeptide libraries derived from an antifungal hexapeptide pharmacophore Arg-D-Trp-D-Phe-Ile-D-Phe-His-NH(2) (II) have been synthesized. The three C-terminal positions 7, 8 and 9 were subject to randomization using 19 genetically coded amino acids. They were then screened for their antifungal activity against Candida albicans and Cryptococcus neoformans in order to quantify inhibition at each step of the nonapeptide sublibrary deconvolution. The studies led to the identification of several novel nonapeptides with potent antifungal activity. Two of the nonapeptides exhibited approximately 17-fold increase in the activity in comparison to the lead hexapeptide motif His-D-Trp-D-Phe-Phe-D-Phe-Lys-NH(2) (I) against C. albicans.  相似文献   

7.
Small molecules that bind proteins can be used as ligands for protein purification and for investigating protein-protein and protein-drug interactions. Unfortunately, many methods used to identify new ligands to desired proteins suffer from common shortcomings, including the requirement that the target protein be purified and/or the requirement that the ligands be selected under conditions different from those under which it will be used. We have developed a new method called the Bead blot that can (i) select ligands to unpurified proteins, including trace proteins, present in complex materials (e.g., unfractionated plasma); (ii) select ligands to multiple proteins under a variety of conditions in a single experiment; and (iii) be used with libraries of different types of ligands. In the Bead blot, a library of ligands, synthesized on chromatography resin beads, is incubated with a starting material containing a target protein for which a ligand is sought. The proteins in the material bind to their complementary ligands according to specific affinity interactions. Then the protein-loaded beads are immobilized in a porous matrix, and the proteins are directionally eluted from the beads and captured on a membrane superimposed on the beads. The location of the target protein on the membrane is determined, and because the position of the protein(s) on the membrane reflects the position of the bead(s) in the matrix, the bead that originally bound the protein is identified, with subsequent elucidation of the ligand sequence. Ligands to several targets can be identified in one experiment. Here we demonstrate the broad utility of this method by the selection of ligands that purify plasma protein complexes or that remove pathogens from whole blood with very high affinity constants. We also select ligands to a protein based on competitive elution.  相似文献   

8.
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.  相似文献   

9.
The three-dimensional structure of a synthetic fragment of human apolipoprotein CII (apo-CII) in 35%, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) has been determined on the basis of distance and intensity constraints derived from two-dimensional proton nuclear magnetic resonance measurements. The NOE crosspeak build-up rates were converted to distance constraints which were used in the distance geometry program DIANA. A set of one hundred structures were generated and of these ten structures were used in molecular dynamics simulations using the program XPLOR. This program enabled a direct minimization between the difference of the two-dimensional NOE intensities and those calculated from the full relaxation matrix. In this way spin diffusion is fully taken into account, which can be seen from the considerable improvement of the R-factor after the relaxation matrix refinement. These calculations show that this fragment, which corresponds to the carboxy terminal 30 amino acids of intact apo-CII and which retains its ability to activate lipoprotein lipase, is essentially flexible, but has three defined secondary structural elements. The most significant one is an -helix between residues 67 and 74. The following three residues adopt a turn-like structure. Another turn of -helix is seen between residues 56 and 59. The effect of the solvent system on the secondary structure was studied by circular dichroism spectroscopy. The results show that the mixed aqueous 35% HFP solvent induces secondary structure of a very similar nature to the one induced by sodium dodecyl sulphate.Abbreviations Apo-CII Apolipoprotein CII - CD Circular Dichroism - DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPG 1,2-dioleoyl-sn-glycero-3-phosphoglycerol - HAc Acetic Acid - HFP 1,1,1,3,3,3-hexafluoro-2-propanol - ISPA Isolated Spin Pair Approximation - NMR Nuclear Magnetic Resonance - NOE Nuclear Overhauser Enhancement - NOESY Nuclear Overhauser Enhancement Spectroscopy - RMSD Root Mean Square Deviation - SDS Sodium Dodecyl Sulfate  相似文献   

10.
This article describes a strategy to develop, starting from a de novo design, bivalent peptides containing two different (alpha-helix and beta-hairpin) and independent secondary-structure elements. The design was based on the use of conformationally restricted peptide libraries. Structural characterization by NMR revealed that the peptides were stable and did not show any long-range NOE interactions between the N-terminal beta-hairpin and the C-terminal alpha-helix. These results suggest that the two elements of secondary structure are stable and well folded.  相似文献   

11.
Phage libraries displaying linear or disulfide-constrained peptides often yield weak binders, upon screening against a target, and must be optimized to improve affinity. The disadvantages of libraries based on larger complex proteins, such as single chain antibodies, have stimulated interest in the development of smaller nonimmunoglobulin protein scaffolds. A promising candidate is the Trp cage motif, a 20-residue C-terminal sequence of exendin-4. Amino acid substitution within the Trp cage resulted in a 20-mer peptide recognized as an ultrafast cooperative folding miniprotein, with ideal characteristics for the discovery of small structured nonimmunoglobulin motifs having a stable tertiary structure. Although we were unable to display the Trp cage on M13 phage, successful display was achieved using the lytic T7 phage. Interestingly, mutations were observed at a frequency dependent on display valency. A Trp cage library designed with randomized amino acids at seven solvent-exposed positions was developed from 1.6 x 10(9) primary clones in T7Select10-3b. DNA sequencing of 109 library clones revealed 38% mutants and 16% truncations by TAG codons at randomized positions. Amino acid frequencies were largely within expected bounds and DIVAA analysis revealed that the library had an average diversity of 0.67. Utility of the library was demonstrated by identification of HPQ containing Trp cage miniproteins, which bound streptavidin, and AAADPYAQWLQSMGPHSGRPPPR, which bound to human bronchial epithelial cells. A high complexity library based on the Trp cage miniprotein has demonstrated potential for identifying novel cell and protein binding peptides that could be used for the delivery of therapeutic molecules or as target-specific therapeutic agents.  相似文献   

12.
The solid-phase synthesis of a library based on the natural product anisomycin is described. The resulting library was tested against a panel of bacterial and fungal targets, and active compounds were identified in a Staphylococcus aureus whole-cell assay and an efflux-deficient fungal whole-cell assay.  相似文献   

13.
Summary The 21-amino acid peptides siamycin II (BMY-29303) and siamycin I (BMY-29304), derived from Streptomyces strains AA3891 and AA6532, respectively, have been found to inhibit HIV-1 fusion and viral replication in cell culture. The primary sequence of siamycin II is CLGIGSCNDFAGCGYAIVCFW. Siamycin I differs by only one amino acid; it has a valine residue at position 4. In both peptides, disulfide bonds link Cys1 with Cys13 and Cys7 with Cys19, and the side chain of Asp9 forms an amide bond with the N-terminus. Siamycin II, when dissolved in a 50:50 mixture of DMSO and H2O, yields NOESY spectra with exceptional numbers of cross peaks for a peptide of this size. We have used 335 NOE distance constraints and 13 dihedral angle constraints to generate an ensemble of 30 siamycin II structures; these have average backbone atom and all heavy atom rmsd values to the mean coordinates of 0.24 and 0.52 Å, respectively. The peptide displays an unusual wedge-shaped structure, with one face being predominantly hydrophobic and the other being predominantly hydrophilic. Chemical shift and NOE data show that the siamycin I structure is essentially identical to siamycin II. These peptides may act by preventing oligomerization of the HIV transmembrane glycoprotein gp41, or by interfering with interactions between gp41 and the envelope glycoprotein gp120, the cell membrane or membrane-bound proteins [Frèchet, D. et al. (1994) Biochemistry, 33, 42–50]. The amphipathic nature of siamycin II and siamycin I suggests that a polar (or apolar) site on the target protein may be masked by the apolar (or polar) face of the peptide upon peptide/protein complexation.Abbreviations ABNR adopted basis Newton Raphson - AIDS acquired immunodeficiency syndrome - CW continuous wave - DMSO dimethylsulfoxide - DQF-COSY two-dimensional double-quantum-filtered correlation spectroscopy - HIV human immunodeficiency virus - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser enhancement - NOESY two-dimensional nuclear Overhauser enhancement spectroscopy - ppm parts per million - P.E.-COSY two-dimensional primitive exclusive correlation spectroscopy - REDAC redundant dihedral angle constraint - rf radio frequency - rmsd root-mean-square difference - SIV simian immunodeficiency virus - sw spectral width - m mixing time - TOCSY two-dimensional total correlation spectroscopy - TSP trimethylsilyl-2,2,3,3-2H4-propionate - 2D two-dimensional  相似文献   

14.
Protein tyrosine phosphatases (PTPases) regulate intracellular signal transduction pathways by controlling the level of tyrosine phosphorylation in cells. These enzymes play an important role in a variety of diseases including type II diabetes and infection by the bacterium Yersinia pestis, which is the causative agent of bubonic plague. This report describes the synthesis, using parallel solution-phase methods, of a library of 104 potential inhibitors of PTPases. The library members are based on the bis(aryl alpha-ketocarboxylic acid) motif that incorporates a carboxylic acid on the central benzene linker. This carboxylic acid was coupled with a variety of different aromatic amines through an amide linkage. The aromatic component of the resulting amides is designed to make contacts with residues that surround the active site of the PTPase. The library was screened against the Yersinia PTPase and PTP1B. Based upon the screening results, four members of the library were selected for further study. These four compounds were evaluated against the Yersinia PTPase, PTP1B, TCPTP, CD45, and LAR. Compound 14 has an IC(50) value of 590nM against PTP1B and is a reversible competitive inhibitor. This affinity represents a greater than 120-fold increase in potency over compound 2, the parent structure upon which the library was based. A second inhibitor, compound 12, has an IC(50) value of 240nM against the Yersinia PTPase. In general, the selectivity of the inhibitors for PTP1B was good compared to LAR, but modest when compared to TCPTP and CD45.  相似文献   

15.
We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer‐specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer, in particular, ovarian, glioblastomas, and breast cancer, but not in normal tissue. The library consisted of six individual positional sublibraries in the format, H‐O1–6XXXXX‐NH2, O being one of the 19 proteinogenic amino acids (cysteine omitted) and X an equimolar mixture of these. The library consisted of 114 mixtures in total. Using a biotin‐streptavidin assay, the binding of each sublibrary to NR6M, NR6W‐A, and NR6 cells was tested. These cells express EGFRvIII, EGFR, and neither of the receptors, respectively. The result from each sublibrary was examined to identify the most active amino acid residue at each position. On the basis of this knowledge, eight peptides were synthesized and tested for binding to EGFRvIII. We identified one peptide, H‐FALGEA‐NH2, that showed more selective binding to the mutated receptor than the EGFRvIII specific peptide PEPHC1. This study demonstrates the value of using mixture‐based combinatorial positional scanning libraries for the identification of novel peptide ligands targeted against the cancer‐specific EGFRvIII. Our best candidate H‐FALGEA‐NH2 will be radioactively labeled and evaluated as an imaging agent for positron emission tomography investigation for diagnosis, staging, and monitoring of therapy of various types of cancer. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 201–206, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
The rice blast disease caused by Magnaporthe oryzae is one of the most devastating diseases of cultivated rice. One of the most important stages in the infective cycle of M. oryzae is the formation of the dome-shaped structure called appressorium. The purpose of the present study was to identify novel peptides to control the rice blast disease by blocking the appressorium formation through screening of a synthetic peptide combinatorial library. As result of the screening, a set of 29 putative bioactive peptides were identified, synthesized and assayed in comparison with the previously identified peptide PAF104. The peptides MgAPI24, MgAPI40 and MgAPI47 showed improved inhibitory activity on the M. oryzae appressorium formation. Our data show that these peptides have a differential effect on two developmental structures: appressoria and appressorium-like structures. Antimicrobial assays against M. oryzae and other non-target microorganisms showed a weak or no toxicity of these peptides, demonstrating their specific activity blocking the appressorium formation. Therefore, the outcome of this research would be useful in the development of novel target-oriented peptides to use in plant protection.  相似文献   

17.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

18.
-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained -melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

19.
Herein, we report on the synthesis of a library of cyclic peptides targeted at the somatostatin receptor using the backbone amide linker strategy. After optimising head-to-tail cyclisation and cleavage conditions, a library of discrete cyclic peptides was assembled in high purity and good overall yield.  相似文献   

20.
Summary Herein, we report on the synthesis of a library of cyclic peptides targeted at the somatostatin receptor using the backbone amide linker strategy. After optimising head-to-tail cyclisation and cleavage conditions, a library of discrete cyclic peptides was assembled in high purity and good overall yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号