首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intracranial microdialysis was used to investigate the origin of extracellular gamma-aminobutyric acid (GABA) in the ventral pallidum. Changes in basal GABA levels in response to membrane depolarizers, ion-channel blockers, and receptor agonists were determined. Antagonism of Ca2+ fluxes with high Mg2+ in a Ca(2+)-free perfusion buffer decreased GABA levels by up to 30%. Inhibition of voltage-dependent Na+ channels by the addition of tetrodotoxin also significantly decreased basal extracellular GABA concentrations by up to 45%, and blockade of Ca2+ and Na+ channels with verapamil reduced extracellular GABA by as much as 30%. The addition of either the GABAA agonist, muscimol, or the GABAB agonist, baclofen, produced a 40% reduction in extracellular GABA. GABA release was stimulated by high K+ and the addition of veratridine to increase Na+ influx. High K(+)-induced release was predominantly Ca(2+)-dependent, whereas the effect of veratridine was potentiated in the absence of extracellular Ca2+. Both high K(+)- and veratridine-induced elevations in extracellular GABA were inhibited by baclofen, whereas only veratridine-induced release was antagonized by muscimol. These results demonstrate that at least 50% of basal extracellular GABA in the ventral pallidum is derived from Ca(2+)- or Na(+)-dependent mechanisms. They also suggest that Na(+)-dependent release of GABA via reversal of the uptake carrier can be shown in vivo.  相似文献   

2.
A method for rapid, automated (less than 5 min), and sensitive (detection limit 50 fmol/10 microliter) determination of gamma-aminobutyric acid (GABA) is described. The method is based on precolumn derivatization with o-phthaldialdehyde/t-butylthiol reagent and separation by reverse-phase HPLC with electrochemical detection under isocratic conditions. A 100 X 4 mm Nucleosil 3 C18 column was used; the mobile phase consisted of 0.15 M sodium acetate, 1 mM EDTA (pH 5.4), and 50% acetonitrile; the flow rate was 0.8 ml/min. The potential of the glassy carbon working electrode was +0.75 V. The method allows for the monitoring of GABA levels in the extracellular fluid sampled by microdialysis as documented in the present study when 0.5 mM nipecotic acid is infused via the probe, or 3-mercaptopropionic acid is injected at a dose of 100 mg/kg i.p. There was a 15-fold increase of extracellular GABA after nipecotic acid, whereas in the second case the inhibition of GABA synthesis was followed by a 74% decrease of GABA as compared to basal levels.  相似文献   

3.
Abstract: A push-pull cannula technique was used to study the in vivo release of endogenous GABA in the rat substantia nigra. Intranigral application of both dopamine (DA) and apomorphine produced biphasic changes in the rate of endogenous GABA release. The presence of 10 μM-DA in the perfusion medium increased GABA release (140%). At 25 μM-DA, both stimulation and inhibition of the nigral GABA release were observed. Higher concentrations of DA produced a decrease of the GABA release (50%). A small amount of apomorphine (10 μM in the perfusion medium) resulted in a decrease in GABA release (75%). Application of 25 μM-apomorphine produces opposite effects, similar to those observed after addition of 25 μM-DA. We observed an enhanced GABA release from the substantia nigra at 100 μM-apomorphine in the perfusion medium (360%). The presence of 5 μM-haloperidol produced a small decrease in the rate of GABA release (80%). Both the inhibitory effect of 25 μM-DA and the excitatory effect of 100 μM-apomorphine could be blocked by haloperidol added to the perfusion medium. Dibutyryl cyclic AMP (1.5 mM) and 2-amino-6, 7-dihydroxyl(1, 2, 3, 4) tetrahydronapthalene (ADTN) (50 μM) added to the perfusion medium produced an inhibition of nigral GABA release (55% and 35% respectively) similar to that observed after addition of 50 μM-DA. The amounts of lysine and ethanolamine (measured with GABA concurrently) released into the perfusion medium did not change in most of the experiments. The changes in the rates of release of these compounds that were observed in some experiments were either in the same or in the opposite direction of the change in GABA release. These results suggest that dopaminergic processes within the substantia nigra affect GABA-ergic neurotransmission and that DA and apomorphine have different effects on GABA release.  相似文献   

4.
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.  相似文献   

5.
The effect of aminooxyacetic acid (AOAA), an inhibitor of pyridoxal phosphate-dependent enzymes (including the aminotransferases), on the K+-evoked release of amino acids was studied during microdialysis of neostriatum in anesthetized rats. K+-evoked (100 mM) release of asparatate, glutamate, and GABA was inhibited by 74%, 70%, and 63%, respectively, by 20 mM Mg2+ and are therefore reflecting release from the transmitter pools of these amino acids. Treatment with AOAA decreased the K+-evoked release of aspartate, glutamate, and GABA instantly, with a delayed decrease in the efflux of glutamine and alanine, arguing that the synthesis of transmitter amino acids in particular is sensitive to the activity of pyridoxal phosphate-dependent enzymes. Interestingly, GABA release increased severalfold following the initial decrease, probably reflecting inhibition by AOAA on GABA aminotransferase, the enzyme most sensitive to inhibition by AOAA, and responsible for enzymatic inactivation of transmitter GABA.Special issue dedicated to Dr. Claude Baxter.  相似文献   

6.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In primary cultures of mouse cerebral cortex neurons, sulphur-containing excitatory amino acids (SAAs; namely, L-cysteine sulphinate, L-cysteate, L-homocysteine sulphinate, L-homocysteate, S-sulphocysteine) at concentrations ranging from 0.1 microM to 1 mM evoked a saturable release of gamma-[3H]aminobutyric acid ([3H]GABA) in the absence of any other depolarizing agent. All SAAs exhibited essentially similar potency (EC50, 100-150 microM) in releasing [3H]GABA although a variable profile of maximal stimulatory effect was observed when compared with basal release. The intracellular accumulation of the lipophilic cation, [3H]tetraphenylphosphonium, was significantly reduced in the presence of all SAAs, thus verifying a depolarization of the neuronal plasma membrane. SAA-stimulated release of [3H]GABA was shown to comprise two distinct components, calcium-dependent and calcium-independent, which occur after activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Thus, all SAA-evoked responses were antagonized by the selective, competitive NMDA-receptor antagonist, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (IC50 range, greater than 50 microM) and the non-NMDA-receptor antagonist, 6,7-dinitroquinoxalinedione (IC50 range, 5-50 microM). Removal of magnesium ions from the superfusion medium caused a significant potentiation of SAA-evoked responses without having any effect on basal levels of [3H]GABA efflux, a result consistent with an involvement of NMDA-receptor activation. Calcium-independent release (i.e., that release remaining in the presence of 1 mM cobalt ions) was a distinct component but of smaller magnitude. Using 500 microM excitatory amino acid agonist concentrations, this component of release was (1) markedly attenuated by 15 microM SKF-89976-A, a non-transportable inhibitor of the GABA carrier, and (2) abolished when choline ions replaced sodium ions in the superfusion medium or when in the presence of excitatory amino acid receptor antagonists. These observations are clearly consistent with a receptor-mediated, depolarization-induced reversal of the GABA carrier.  相似文献   

8.
The amygdaloid complex (AMY) is implicated in emotional and motivational aspects of behavior, including the formation of positive reinforcement association. AMY may also associated with brain rewarding circuitry. In the present study, the effect of ethanol (EtOH) on the release of dopamine (DA) and serotonin (5-HT) was studied in the central amygdaloid nucleus (CeAMY), and projecting excitatory afferents to the ventral tegmental area (VTA), of freely moving Wistar rats by brain microdialysis. Within 20 min of i.p. injection of EtOH (2 g/kg), the levels of DA and 5-HT in the CeAMY dialysate increased over the baseline value by 270 and 160% (N = 6-7), respectively. Addition of EtOH (25, 50 and 100 mM) to the microdialysis perfusion medium for 1 h caused a 115-150% dose-related increase in the extracellular level of DA in the CeAMY. 100 mM EtOH-induced CeAMY DA release continued to increase for 1 h after the perfusion medium was returned to normal perfusion medium. In contrast, the CeAMY 5-HT level was increased only by the addition of 100 mM EtOH for 1 h to 130% for 80 min. The stimulation of the CeAMY by EtOH through the microdialysis membrane showed delayed responses of DA and 5-HT compared with the i.p. injection of EtOH. Overall, the present findings are not sufficient to conclude whether EtOH acts directly or indirectly on the major monoamine nerve cells in the CeAMY, but the degree of acute EtOH action affected the differences in time at the peak response on EtOH-induced DA and 5-HT releases in the CeAMY via VTA.  相似文献   

9.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

10.
The effect of the glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), on glutamate levels in, and glutamate release from, rat striatal tissue was examined. Tissue levels of glutamate were unchanged 24 h after an intraventricular injection of MSO, but tissue glutamine levels were decreased 50%. Calcium-dependent, potassium-stimulated glutamate release was diminished in tissue prisms from animals pretreated with MSO compared to controls. The decreased release of glutamate correlated over time with the inhibition of GS following an intraventricular injection of MSO. The maximum diminution of calcium-dependent, potassium-stimulated glutamate release (50%) and the maximum inhibition of GS activity (51%) were observed 24 h after MSO. The addition of 0.5 mM glutamine to the perfusion medium completely reversed the effects of MSO pretreatment on calcium-dependent, potassium-stimulated glutamate release. Since GS is localized in glial cells and the measured glutamate release is presumed to occur from neurons, the data support the contention that astroglial glutamine synthesis is an important contributor to normal neuronal neurotransmitter release.  相似文献   

11.
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels.  相似文献   

12.
Effect of Taurine on Neurotransmitter Release from Insect Synaptosomes   总被引:1,自引:0,他引:1  
The effect of taurine on the release of [3H]acetylcholine ([3H]ACH) and [3H]gamma-aminobutyric acid ([3H]GABA) from preloaded locust synaptosomes has been studied. Veratridine (100 microM) and K+ (100 mM) both evoked [3H]ACh release and this was reduced in a concentration-dependent manner by taurine (5, 10, and 20 mM). In contrast to this, veratridine induced no observable release of [3H]GABA, and the response to K+ was slight. In the presence of taurine, however, a concentration-dependent enhancement of [3H]GABA release was observed. Since nipecotic acid (1 mM), an inhibitor of neuronal GABA uptake, also revealed [3H]GABA release induced by veratridine, it is suggested that both this effect and that of taurine are due to prevention of GABA reuptake. These results suggest that taurine may act as a neuromodulator in insects.  相似文献   

13.
The present study investigated the effects of N-methyl-D-aspartic acid.H2O (NMDA) on the dopamine, glutamate and GABA release in the subthalamic nucleus (STN) by using in vivo microdialysis in rats. NMDA (100 micromol/L) perfused through the microdialysis probe evoked an increase in extracellular dopamine in the STN of the intact rat of about 170%. This coincided with significant increases in both extracellular glutamate (350%) and GABA (250%). The effect of NMDA perfusion on neurotransmitter release at the level of the STN was completely abolished by co-perfusion of the selective NMDA-receptor antagonist MK-801 (10 micromol/L), whereas subthalamic perfusion of MK-801 alone had no effect on extracellular neurotransmitter concentrations. Furthermore, NMDA induced increases in glutamate were abolished by both SCH23390 (8 micromol/L), a selective D1 antagonist, and remoxipride (4 micromol/L), a selective D2 antagonist. The NMDA induced increase in GABA was abolished by remoxipride but not by SCH23390. Perfusion of the STN with SCH23390 or remoxipride alone had no effect on extracellular neurotransmitter concentrations. The observed effects in intact animals depend on the nigral dopaminergic innervation, as dopamine denervation, by means of 6-hydroxydopamine lesioning of the substantia nigra, clearly abolished the effects of NMDA on neurotransmitter release at the level of the STN. Our work points to a complex interaction between dopamine, glutamate and GABA with a crucial role for dopamine at the level of the STN.  相似文献   

14.
The effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a selective glutamate receptor agonist, on the release of previously incorporated [(3)H]GABA was examined in superfused striatal slices of the rat. The slices were loaded with [(3)H]GABA in the presence of beta-alanine (1 mM) and superfused with Krebs-bicarbonate buffer containing nipecotic acid (0.1 mM) and aminooxyacetic acid (0.1 mM) to inhibit GABA uptake and metabolism. AMPA (0.01 to 3 mM) increased basal [(3)H]GABA outflow and nipecotic acid potentiated this effect. The [(3)H]GABA releasing effect of AMPA was an external Ca(2+)-dependent process in the absence but not in the presence of nipecotic acid. Cyclothiazide (0.03 mM), a positive modulator of AMPA receptors, failed to evoke [(3)H]GABA release by itself, but it dose-dependently potentiated the [(3)H]GABA releasing effect of AMPA. The AMPA (0.3 mM)-induced [(3)H]GABA release was antagonized by NBQX (0.01 mM) in a competitive fashion (pA(2) 5.08). The negative modulator of AMPA receptors, GYKI-53784 (0.01 mM) reversed the AMPA-induced [(3)H]GABA release by a non-competitive manner (pD'(2) 5.44). GYKI-53784 (0. 01-0.1 mM) also decreased striatal [(3)H]GABA outflow on its own right, this effect was stereoselective and was not influenced by concomitant administration of 0.03 mM cyclothiazide. GYKI-52466 (0. 03-0.3 mM), another negative modulator at AMPA receptors, also inhibited basal [(3)H]GABA efflux whereas NBQX (0.1 mM) by itself was ineffective in alteration of [(3)H]GABA outflow.The present data indicate that AMPA evokes GABA release from the vesicular pool in neostriatal GABAergic neurons. They also confirm that multiple interactions may exist between the agonist binding sites and the positive and negative modulatory sites but no such interaction was detected between the positive and negative allosteric modulators. Since GYKI-53784, but not NBQX, inhibited [(3)H]GABA release by itself, AMPA receptors located on striatal GABAergic neurons may be in sensitized state and phasically controlled by endogenous glutamate. It is also postulated that these AMPA receptors are located extrasynaptically on GABAergic striatal neurons.  相似文献   

15.
Verapamil is an organic calcium antagonist which is believed to prevent the passage of calcium (Ca2+) across the cell membrane into the cell. In a rat pituitary perifusion-immunoprecipitation system, verapamil (50 microM) prevents the inhibitory effect of increased extracellular Ca2+ (5.4 mM) on basal and stimulated release of stored, prelabeled [3H]GH and [3H]PRL. [3H]GH release from pituitary explants perifused in standard medium (GIBCO Minimum Essential Medium: 1.8 mM Ca2+) is transiently increased by 50 microM verapamil while [3H]PRL release is suppressed. With continued exposure to 50 microM verapamil, [3H]GH release rates fall below (89.8 +/- 2.1% of base) preverapamil levels while [3H]PRL release rates simply remain suppressed (48.2 +/- 7.3% of base). With 250 microM verapamil, poststimulatory inhibition of [3H]GH release occurs more quickly, and after its withdrawal rebound release of both GH and PRL occur. Inhibition of [3H]GH release by 25 nM somatostatin (SRIF) and post-SRIF rebound [3H]GH release is not prevented by 50 microM verapamil. The early, rapid [3H]GH release phase of 1 mM dibutyryl cyclic AMP (dbcAMP) stimulation is potentiated by verapamil pretreatment, but only if the verapamil is continued during dbcAMP stimulation. Potassium (21 mM K+)-stimulated release of both 3H-labeled hormones is inhibited after similar pretreatment 50 microM verapamil. Conclusions: (a) verapamil antagonizes the inhibitory effects of increased extracellular Ca2+ on basal or dbcAMP-stimulated [3H]GH and [3H]PRL release; (b) in standard medium (1.8 mM Ca2+), 50 microM verapamil increases basal [3H]GH release suggesting either a direct effect or an antagonism of 1.8 mM extracellular Ca2+; (c) although verapamil-sensitive Ca2+ movement is not necessary for dbcAMP stimulation of [3H]GH release, verapamil potentiates dbcAMP-stimulated release; (d) because verapamil also inhibits K+-stimulated [3H]GH and [3H]PRL release, these observations support previous suggestions that K+- and dbcAMP-stimulated rapid hormone release occurs from different intracellular sites; and (e) because verapamil does not prevent any phase of SRIF action and since these two agents differentially alter K+- and cAMP-stimulated release, their mechanisms of action must partially differ.  相似文献   

16.
We employed dual probe microdialysis in the nucleus accumbens and ipsilateral ventral pallidum of the halothane anaesthetized rat to investigate the effect of intra-accumbens perfusion with the sulphated octapeptide cholecystokinin (CCK-8S, 10-1000 nM, 60 min) alone and in the presence of the selective CCK1 and CCK2 receptor antagonists L-364,718 (10 and 100 nM) and PD134308 (10 nM), tetrodotoxin (TTX, 1000 nM) and the GABA(A) receptor antagonist bicuculline (1000 nM), on dialysate GABA levels in the ventral pallidum. Intra-accumbens perfusion with the 100 and 1000 nM concentration of CCK-8S was associated with a significant decrease (-16+/-3% and -23+/-3% vs basal, respectively) in ventral pallidum GABA levels. The CCK-8S (1000 nM) induced decrease in ventral pallidal dialysate GABA levels was abolished when PD134308, TTX and bicuculline, but not L-364,718, were included into the perfusion medium of the accumbens probe. The data indicate that nucleus accumbens CCK-8S exerts a CCK2 receptor mediated inhibition of ventral pallidal GABA levels. Furthermore, the TTX and bicuculline sensitivity of this effect suggests that this is possibly mediated via CCK2 receptors probably located on local GABA interneurons.  相似文献   

17.
Extracellular levels of endogenous serotonin (5-HT) and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in the caudate-putamen of anesthetized and awake rats using intracerebral microdialysis coupled to HPLC with fluorimetric detection. A dialysis probe (of the loop type) was perfused with Ringer solution at 2 microliters/min, and samples collected every 30 or 60 min. Basal indole levels were followed for up to 4 days in both intact and 5,7-dihydroxytryptamine (5,7-DHT) lesioned animals. Immediately after the probe implantation, the striatal 5-HT levels were about 10 times higher than the steady-state levels that were reached after 7-8 h of perfusion. The steady-state baseline levels, which amounted to 22.5 fmol/30 min sampling time, remained stable for 4 days. In 5,7-DHT-denervated animals, the steady-state levels of 5-HT, measured during the second day after probe implantation, were below the limit of detection (less than 10 fmol/60 min). However, during the first 6 h post-implantation, the 5-HT output was as high as in intact animals, which suggests that the high 5-HT levels recovered in association with probe implantation were blood-derived. As a consequence, all other experiments were started after a delay of at least 12 h after implantation of the dialysis probe. In awake, freely moving animals, the steady-state 5-HT levels were about 60% higher than in halothane-anesthetized animals, whereas 5-HIAA was unaffected by anesthesia. KCl (60 and 100 mM) added to the perfusion fluid produced a sharp increase in 5-HT output that was eight-fold at the 60 mM concentration and 21-fold at the 100 mM concentration. In contrast, 5-HIAA output dropped by 43 and 54%, respectively. In 5,7-DHT-lesioned animals, the KCl-evoked (100 mM) release represented less than 5% of the peak values obtained for the intact striata. Omission of Ca2+ from the perfusion fluid resulted in a 70% reduction in baseline 5-HT output, whereas the 5-HIAA levels remained unchanged. High concentrations of tetrodotoxin (TTX) added to the perfusion medium (5-50 microM) resulted in quite variable results. At a lower concentration (1 microM), however, TTX produced a 50% reduction in baseline 5-HT release, whereas the 5-HIAA output remained unchanged. The 5-HT reuptake blocker, indalpine, increased the extracellular levels of 5-HT sixfold when added to the perfusion medium (1 microM), and threefold when given intraperitoneally (5 mg/kg). By contrast, the 5-HIAA level remained unaffected during indalpine infusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Bulk-isolated astrocytes from rats with early hepatogenic encephalopathy (HE) induced with thioacetamide responded to the increase of potassium in the incubation medium from 5 mM to 75 mM with a markedly enhanced release of previously taken up [14C]gamma-aminobutyric acid ([14C]GABA). The process was not affected by omission of calcium and/or addition of EGTA to the incubation medium. Only a slight stimulation of GABA release by high potassium was observed in astrocytes from control rats. In contrast, histamine and histidine were vigorously released from control astrocytes in high-potassium medium, and their release was not enhanced by HE, indicating that the observed phenomenon is specific for GABA.  相似文献   

19.
Somatostatin biosynthesis in the hippocampus is activated during and following kindling epileptogenesis. The aim of this study was to investigate whether this phenomenon is associated with enhanced somatostatin release in vivo. Experiments have been run in awake, freely moving rats, implanted with a bipolar electrode in the right amygdala (for kindling stimulation), and with a recording electrode and a microdialysis probe in the left hippocampus. Basal somatostatin-like immunoreactivity (-LI) release was significantly greater in kindled than naive rats. In naive rats, a 2-min perfusion with 100 mM K(+) did not affect behavior and EEG recordings and nonsignificantly increased somatostatin-LI release; a 10-min K(+) perfusion evoked numerous wet dog shakes, electrical seizures (class 0; latency congruent with 8 min, duration congruent with 8 min), and somatostatin-LI release ( congruent with 350% of basal); and a single kindling after-discharge (4 +/- 3-s duration in the hippocampus) also evoked somatostatin-LI release ( congruent with 200% of basal). In kindled rats, a 2-min 100 mM K(+) perfusion evoked hippocampal discharges in three of seven animals (latency congruent with 2 min, mean duration congruent with 1.5 min) and increased somatostatin-LI release ( congruent with 250% of basal); a 10-min K(+) perfusion evoked behavioral seizures (class 1 to 5, latency congruent with 4 min, mean duration congruent with 12 min) with numerous wet dog shakes and robust somatostatin-LI release ( congruent with 350% of basal); and a kindling stimulation evoked generalized seizures (class 4 or 5, 77 +/- 15-s duration in the hippocampus) with remarkable somatostatin-LI release ( congruent with 300% of basal). These data demonstrate that hippocampal somatostatin release is increased in the kindling model in vivo.  相似文献   

20.
Hamrin K  Henriksson J 《Life sciences》2005,76(20):2329-2338
The aim of this study was to investigate the local effect of the insulin-mimetic agent vanadate on glucose metabolism in human skeletal muscle in vivo. Interstitial concentrations of glucose and lactate were determined by microdialysis at a low flow rate in the quadriceps femoris muscle of 18 men. In the same leg two microdialysis catheters were inserted. In one catheter, the perfusion medium was supplemented with sodium metavanadate (10-100 mM) after a basal period, the other catheter served as control. In the catheter perfused with metavanadate, the interstitial glucose concentration was decreased by 13-50% compared to the control catheter (p<0.05). The lactate concentration was higher in the 50 mM and 100 mM metavanadate catheters compared to control (39-89%, p<0.05). There was no difference between control and metavanadate catheters in urea concentrations. Five of the subjects were insulin-resistant and for them the results were similar, although the effect was somewhat smaller. The decreased interstitial glucose concentration, and the increased lactate concentration, in the vicinity of the microdialysis catheter most likely reflects an increased cellular glucose uptake. The present study thus indicates that vanadate mimics the effect of insulin in human skeletal muscle in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号