首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响   总被引:2,自引:0,他引:2  
王红光  于振文  张永丽  王东  石玉 《生态学报》2012,32(6):1861-1870
摘要:2007—2008年度以高产冬小麦品种济麦22为材料,设置2个拔节水灌溉时期,为拔节期和拔节后10 d;3个目标相对含水量,灌水后0~140 cm土层土壤相对含水量分别达到65%、75%、80%,以W1、W2、W3表示拔节期灌水处理,DW1、DW2、DW3表示拔节后10 d灌水处理;开花期均灌水至0~140 cm土层土壤相对含水量为70%,研究推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响。结果表明:(1)W2和DW2处理有利于提高0~60 cm土层土壤硝态氮含量,促进籽粒氮素积累;营养器官贮藏氮素向籽粒的转运量、籽粒产量和氮肥偏生产力分别高于W1和DW1,与W3和DW3处理无显著差异;开花后植株氮素积累量、籽粒蛋白质含量和水分利用效率分别高于W3和DW3,是拔节期和拔节后10 d灌水的最优处理。(2)W2和DW2处理比较,DW2成熟期100~140 cm土层硝态氮残留量低于W2,籽粒产量、籽粒蛋白质含量、氮素吸收效率、氮肥偏生产力和水分利用效率均显著高于W2,是本试验条件下的最佳灌水方案。2008—2009生长季试验各处理变化趋势同2007—2008年度。  相似文献   

2.
The responses of Acala cotton (Gossypium hirsutum L.) in California to a range of applied nitrogen (N) treatments were investigated in a 5-year, multisite experiment. The experiment's goals were to identify crop growth and yield responses to applied N and provide information to better assess the utility of soil residual N estimates in improving fertilizer management. Baseline fertilizer application rates for the lowest applied N treatments were based on residual soil nitrate-N (NO3-N) levels determined on soil samples from the upper 0.6 m of the soil collected prior to spring N fertilization and within 1 week postplanting each year. Results have shown positive cotton lint yield responses to increases in applied N across the 56 to 224 kg N/ha range in only 41% (16 out of 39) of test sites. Soil NO3-N monitoring to a depth of 2.4 m in the spring (after planting) and fall (postharvest) indicate most changes in soil NO3- occur within the upper 1.2 m of soil. However, some sites (those most prone to leaching losses of soluble nutrients) also exhibited net increases in soil NO3-N in the 1.2- to 2.4-m depth zone when comparing planting time vs. postharvest data. The lack of yield responses and soil NO3-N accumulations at some sites indicate that more efforts should be put into identifying the amount of plant N requirements that can be met from residual soil N, rather than solely from fertilizer N applications.  相似文献   

3.
Rates of N uptake by spring wheat as ammonium and as nitrate, and rates of nitrification, gross N immobilization and gross N mineralization were measured in a pot experiment during 84 days of growth in a clay soil. Soil treatments included an unfertilized control and addition of 15NH4NO3 or NH4 15NO3 in the absence and presence of N-serve 24E. Incorporation of ammonium into the soil organic N pool was considerably higher in the presence compared to the absence of nitrapyrin, but the processes contributing to this effect could not be positively identified. Both dry matter and grain yield as well as N uptake by wheat were enhanced in the presence of the inhibitor in N fertilized soil, despite the increased immobilization of N. On the other hand, inhibitor application had a detrimental effect on yield and N uptake by wheat in unfertilized soil. Both ammonium and nitrate forms of inorganic N were absorbed by wheat, but nitrate uptake was dominant in the absence of the inhibitor. The uptake of N as ammonium was higher and the uptake of N as nitrate was less, both in absolute and proportional terms, in the presence compared to the absence of inhibitor. In addition, the proportion of N taken up as ammonium was higher than the proportion of N as ammonium in the available N pool up to day 56 in the inhibitor treatment, which indicated a preference for ammonium uptake by wheat. Evidence was obtained which suggested that several factors may have contributed to the positive response of wheat to inhibitor application in N fertilized soil, including reduced N losses, higher gross N mineralization and a physiological response due to the proportional increase in uptake of inorganic N as ammonium.  相似文献   

4.
Summary During 1976 through 1978, 10N treatments (combinations of N application times and rates) were used in a corn study. Those treatments created different levels of soil NO 3 –N content that were well-suited to a study of the influence of residual NO 3 –N and applied N on soybean yield. In April 1979 we applied ammonium nitrate at rates of 0, 75, or 150 kg N/ha to three subplots formed from each of the whole plots (previous N treatment plots). With N fertilization in 1979, seed yield increased where the residual NO 3 –N amount was less than 190 kg/ha but decreased where the residual amount was greater than 190 kg/ha. As the NO 3 –N content in the soil increased by 1 kg/ha, the soybean yield increase due to N fertilization in 1979 decreased by approximately 4 kg/ha.Contribution no. 82-368-J, Dep. of Agronomy, Kansas Agric. Exp. Stn., Manhattan, KS 66506, USA  相似文献   

5.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

6.
Groundwater and nitrogen fertilizer overuse severely threatens crop productions; thus, current ecological agriculture requires low irrigation and nitrogen fertilizer inputs. The effects of combined reduced irrigation and nitrogen fertilizer addition on soil organism (e.g., mite) community and biodiversity remain poorly understood. We analyzed soil mite community composition, wheat grain yield, and soil characteristics in a 10‐year manipulation experiment with two levels of irrigation (reduced and conventional irrigation) and five nitrogen fertilizer levels (0, 70, 140, 210, and 280 kg N/ha). Reduced irrigation (20% reduction, from 280 to 220 mm) and nitrogen fertilizer (25% reduction, from 280 to 210 kg N/ha) addition did not significantly influence soil mite community and wheat yield. The relative abundances of fungivores and predators showed negative quadratic relationships with wheat yield, while that of plant parasites showed a positive relationship. The relationships between soil mite trophic groups and wheat yield revealed that we can evaluate the impacts of reduced irrigation and nitrogen fertilizer addition from the perspective of soil fauna. Soil mite community composition was altered by soil abiotic factors prior to reduced irrigation and nitrogen fertilizer addition. Overall, moderate reductions of irrigation and nitrogen fertilizer may not threaten to soil mite community and diversity or decrease crop production; in contrast, such reductions will benefit mite community development and the sustainable agriculture.  相似文献   

7.
A biological (3 and 6 weeks aerobic incubation) and a chemical method [successive extractions with cold 0.1 (H1-N) and 0.5M HCl (H2-N)] were applied to 21 soils to determine: a) the potentially mineralizable-N; b) the most useful soil variables for predicting soil-N availability; and c) their usefulness for predicting N uptake by a greenhouse wheat crop. At t?=?3, both net N mineralized (NNM) and net N mineralization rate (NNMR) were correlated: a) positively with SOM- and CEC-related variables; and b) positively with soil ??15N and negatively with soil pH, suggesting that N-mineralization, dominated by nitrification, is associated with NO3 ?-N losses and soil acidification. At t?=?6, all previously discussed variables were important for NNM, but not for NNMR, mainly controlled by the available-P content. The importance of H1-N increased with N2-inputs and decreased with NO3 ? losses and soil-N. Relationships of H1-N and H2-N with soil CEC and texture showed the strong relations among nutrients content, biological activity and N mineralization, and the recalcitrance of clay-bounded SOM. Soil-N correlations with wheat-N in absolute amount (positive) and as percentage of soil-N (negative) showed an important available-N supply by N-rich soils, despite their slow N turnover. All best regression models for wheat-N included 1-2 main available nutrients. The percentage of soil-N exported to plant biomass was negatively correlated with non-crystalline Al compounds and soil ??15N. Mineralized-N and wheat-N pools did not share many correlations with soil properties and seemed to come from different sources; consequently, the mineralized-N, which only explained a quarter of wheat-N variance, was not more useful than soil-N for predicting it. Wheat-N and hydrolysable-N only shared a positive correlation with soil-N, highlighting that they are two mainly unrelated N pools. Nevertheless, half of wheat-N variation was explained by its negative relationship with the percentage of soil-N as (H1+H2)-N; a possible explanation is that (H1+H2)-N is biologically labile and it constitutes an important soil-N fraction only when a limiting factor for microbial N mineralization or plant growth allowed its cumulation.  相似文献   

8.
付鑫  王俊  张祺  戈小荣 《生态学报》2018,38(19):6912-6920
基于田间定位试验,研究了秸秆和地膜覆盖措施对旱作春玉米田土壤氮组分和作物产量的影响。试验包括无覆盖对照,秸秆覆盖和地膜覆盖3个处理,观测指标包括土壤全氮(STN)、颗粒有机氮(PON)、潜在可矿化氮(PNM)、微生物量氮(MBN)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)含量及作物产量。结果表明:试验进行5到7年后,与对照相比,秸秆覆盖处理0—10 cm土层STN、PON、PNM、MBN和NO_3~--N含量3年平均分别提高了13.11%、64.29%、17.51%、16.94%和55.37%,10—20 cm土层STN、PON、MBN和NO_3~--N含量3年平均分别提高了5.93%、33.33%、15.78%和27.57%(P0.05)。而地膜覆盖处理0—10 cm和10—20 cm土层NO_3~--N的含量较对照分别提高了189.14%和135.75%(P0.05),其他氮组分与对照处理差异不显著。秸秆和地膜覆盖处理玉米产量较对照处理3年平均分别提高了6.90%和36.74%(P0.05)。玉米产量与0—20 cm土层NO_3~--N含量和NO_3~--N/STN值呈显著正相关关系。总的来看,秸秆覆盖能显著增加旱地土壤全氮和活性有机氮含量,促进氮素固定,但需注意作物生长后期补充氮肥以满足作物生长需要。而地膜覆盖能显著提高土壤氮素有效性和作物产量,但不利于土壤有机氮的固定,且表层土壤存在潜在氮淋失风险。  相似文献   

9.
Agronomic studies were conducted to examine the effect of fertilizer N on black point incidence in Fielder soft white spring wheat (Triticum aestivum L. em Thell.). Black point incidence rose with increases in the amount of N supplied either as fertilizer applied during the growing season in irrigation water or as soil N, specifically nitrate, from fertilizer N application in previous years. A comparison of four different irrigation regimes demonstrated that black point incidence was highest under frequent irrigation (irrigate to field capacity at 75% available moisture) and lowest under conventional irrigation (irrigate to field capacity at 50% available soil moisture). In each irrigation regime, disease incidence increased as N rates were raised from 0 to 120 kg ha-1. A residual fertilizer-N study demonstrated in 1985 and 1986 that black point incidence generally rose with increasing levels of nitrogen from either preplant applications in the spring or soil nitrate from the previous year. However, additions of fertilizer N were shown to slightly reduce black point incidence at soil nitrate levels above 150 kg ha-1. A two-year fertilizer N study demonstrated that in treatments receiving the same amount (90 kg ha-1) of fertilizer N, the amount broadcast as a preplant treatment versus the amount applied in irrigation water in a fertigation treatment had no effect on black point incidence, but all fertilized treatments had significantly higher levels of disease than the unfertilized check.Contribution no. 3879016  相似文献   

10.
Effects of fertigation scheme on N uptake and N use efficiency in cotton   总被引:7,自引:0,他引:7  
While fertigation can increase fertilizer use efficiency, there is an uncertainly as to whether the fertilizer should be introduced at the beginning of the irrigation or at the end, or introduced during irrigation. Our objective was to determine the effect of different fertigation schemes on nitrogen (N) uptake and N use efficiency (NUE) in cotton plants. A pot experiment was conducted under greenhouse conditions in year 2004 and 2005. According to the application timing of nitrogen (N) fertilizer solution and water (W) involved in an irrigation cycle, four nitrogen fertigation schemes [nitrogen applied at the beginning of the irrigation cycle (N–W), nitrogen applied at the end of the irrigation cycle (W–N), nitrogen applied in the middle of the irrigation cycle (W–N–W) and nitrogen applied throughout the irrigation cycle (N&W)] were employed in a completely randomized design with four replications. Cotton was grown in plastic containers with a volume of 84 l, which were filled with a clay loam soil and fertilized with 6.4 g of N per pot as unlabeled and 15N-labeled urea for 2004 and 2005, respectively. Plant total dry matter (DM) and N content in N–W was significantly higher than in N&W in both seasons, but these were not consistent for W–N and W–N–W treatments. In year 2005, a significantly higher nitrogen derived from fertilizer (NDFF) for the whole plant was found in W–N and N–W than that in W–N–W and N&W. Fertigation scheme had a consistent effect on total NUE: N–W had the highest NUE for the whole plant, but this was not significantly different from W–N. Treatments W–N and W–N–W had similar total NUE, and N&W had the lowest total NUE. After harvesting, the total residual fertilizer N in the soil was highest in W–N, lowest in N–W, but this was not significantly different from N&W and W–N–W treatments. Total residual NO3–N in the soil in N&W and W–N treatments was 20.7 and 21.2% higher than that in N–W, respectively. The total 15N recovery was not statistically significant between the four fertigation schemes. In this study, the fertigation scheme N–W (nitrogen applied at the beginning of an irrigation cycle) increased DM accumulation, N uptake and NUE of cotton. This study indicates that Nitrogen application at the beginning of an irrigation cycle has an advantage on N uptake and NUE of cotton. Therefore, NUE could be enhanced by optimizing fertilization schemes with drip irrigation.  相似文献   

11.
Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0–20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and environmental conditions in the greenhouse compared to the field. Changes occurred more in soil labile than non-labile C and N fractions in the greenhouse than the field.  相似文献   

12.
Nitrogen fertigation of greenhouse-grown cucumber   总被引:2,自引:0,他引:2  
Summary This greenhouse study investigated the response of trickle-irrigated cucumber (Cucumis sativa cv. ‘Petita’) to three N levels applied with every irrigation via the irrigation stream. The plants were grown in pots filled with 12 kg of soil. Water containing 5.8, 11.8, or 17.8 mmol N/l, and uniformly supplied with 2.0 and 3.9 mmol/l of P and K, respectively, was applied two to three times daily. In all treatments of 0.3 leaching fraction was allowed. The resulting total N applications were 15.7, 31., and 47.2 g N/plant. The total amount of water applied was 1851/plant. Total N and NO3-N, in lajinae and petioles, increased with increasing N level whereas P and K in generated decreased. Although different NO3/NH4 ratios in the treatments may have influeced the response to N, it could be concluded that the highest yield was obtained with 11.8 mmol N/1 due to increased number of fruit. In the root volume of this treatment the NO3-N concentration in the soil solution was aroun 7 mmol/1 for most of the growing season. The dry matter concentration of fruits was not affected by the N levels. It was concluded that 11.8 mmol N/1 applied with every irrigation via the irrigation stream is adequate to cover the needs of greenhous-grown cucumber for higher yield (9.42 kg/plant over a harvesting period of 93 days).  相似文献   

13.
Summary We studied the effect of liming on the rates of mineralization and nitrification in a coarse-textured kaolinitic Ultisol. Soil samples were taken from field plots which received lime rates from 0 to 4mt/ha three years prior to the study. The pH of the soil samples varied from 4.2 to 6.1. Ammonification of soil organic N and added urea source proceeded readily and was not affected by lime rate. Nitrification occurred in both limed and unlimed soils but the rate of nitrification depended upon the rate of lime application. Soil pH, exchangeable Ca and exchangeable A1 were significantly correlated with the amount of NO3-N accumulated at the end of the 65 days incubation period. Nitrification of NH4-N from ammonium sulfate was absent in soils receiving lower rates of lime which gave pH values ranging from 4.2 to 4.8. Added ammonium source was nitrified readily after a 3-week delay period in the soil (pH 6.1) which received a higher rate of lime (4 mt/ha).  相似文献   

14.
Summary Adjacent corn and ryegrass plots were fertilized with rates of 0, 50, 100, 150, and 200 kg N as ammonium nitrate/ha. Corn growing on this soil did not respond to fertilizer N while ryegrass responded to rates of up to 200 kg N/ha. The differences in N availability was also reflected in the higher profile NO3–N under corn than under ryegrass. The same general trends occurred on a second soil, where N availability for the hay crop was also less than for corn crop. Compared with corn, hay responded more to N fertilizer and had lower soil NO3–N levels.Grasslands appear to respond to higher N fertilizer rates than cultivated crops on the same soil.Vermont Agricultural Experiment Station Journal Article No. 495.  相似文献   

15.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

16.
为探索山东南四湖沿岸麦玉轮作区玉米季内减少土壤无机氮素淋溶和径流损失的施肥策略,降低其对湖区水质产生的潜在威胁,采用田间原位安装淋溶水采集器和地表水径流池收集水样结合室内分析不同形态氮含量的方法,研究了不同施肥模式下无机氮素淋溶和径流损失特征。结果表明:土壤淋溶水量及地表水径流量与降水呈显著正相关关系,其水量受秸秆类物质还田的影响;硝态氮(NO3--N)与铵态氮(NH4 -N)随地表水径流损失的浓度及总量均明显高于淋溶水,由径流方式损失的氮素占2/3以上,是氮素以水溶液形式流失的主要途径;淋溶和径流均以NO3--N损失为主(径流损失中NO3--N占总量的82.9%-90.8%,淋溶损失中NO3--N占63.5%-72.9%),地表径流水NO3--N浓度对水质有较大影响,但土壤淋溶水NO3--N浓度对地下水污染不构成威胁;农民习惯施肥处理在玉米整个生育期淋溶和径流氮损失最高。在保证玉米产量前提下,降低氮素流失造成湖区的污染,平衡施用氮磷钾肥、施用控释氮肥、有机替代无机和秸秆还田等措施均可在沿南四湖区农田使用。  相似文献   

17.
It is important to understand switchgrass (Panicum virgatum L.) productivity with relation to diverse nutrient deficiency conditions in order to optimize continuous biomass production in marginal lands. This study was conducted on a wasteland sandy soil (Aridosol) to assess biomass yield, nutrient uptake and nitrogen (N) recovery of switchgrass, and soil nitrate-N (NO3?-N) accumulation responses to N (120 kg N ha?1), phosphorus (P, 100 kg P2O5 ha?1), and potassium (K, 45 kg K2O ha?1) applications during 2015 and 2016 in Inner Mongolia, China. The experiment layout was a randomized complete block design with fertilizer mixture treatments of N, P, and K (NPK), P and K (PK), N and K (NK), N and P (NP), and a control with no fertilizer input (CK). Plant height and stem diameter remained unaffected by the different fertilizer treatments. Biomass yield with the NPK treatment in 2015 was 8.9 Mg ha?1 and in 2016 it was 7.3 Mg ha?1. In 2015, compared with the NPK treatment, a significant yield reduction of 33.7% was found with PK, 22.5% with NK, 28.1% with NP, and 40.5% with CK; however, in 2016, yield declined significantly only with CK compared to the rest of the fertilizer treatments, for which yields were statistically similar. Plant N content was reduced for the treatment PK (i.e. N omission); conversely, plant P and K content remained unaffected with P and K omission treatments. Plant nutrient uptake, particularly of N and K, was severely decreased by the nutrient omission treatments when averaged across 2 years. Apparent N recovery (ANR; quantity of N uptake per unit of N applied) was reduced for the NP and NK treatments, which led to an increase in soil NO3?-N accumulation in the top 0–20 cm layer, compared with the NPK treatment. However, ANR was the highest (37.2% in 2015) with the NPK treatment, which also reduced soil NO3?-N accumulation. A balanced N, P, and K fertilizer management approach is suggested to sustain switchgrass yield and stand persistence on semiarid, marginal, sandy wasteland.  相似文献   

18.
杨荣  苏永中 《生态学报》2009,29(3):1459-1469
在黑河中游边缘绿洲沙地农田研究了不同的水氮配合对玉米产量、土壤硝态氮在剖面中的累积和氮平衡的影响.结果表明,施氮处理较不施氮处理产量增加48.22%~108.6%,施氮量超过225 kg hm-2,玉米产量不再显著增加.受土壤结构影响土壤硝态氮在土壤中呈"W"型分布,即土壤硝态氮含量在0~20 cm、140~160 cm和260~300 cm土层均出现峰值,并随施氮量增加,峰值增高.在常规高灌溉量处理硝态氮含量峰值最高值出现在260~300 cm土层,节水25%灌溉处理硝态氮含量峰值最高值出现在土壤表层0~20 cm土层.在常规高灌溉量处理0~300 cm土层中200~300土层硝态氮累积量所占比例最高,介于27.56%~51.86%之间;节水25%灌溉处理在0~300 cm土层中100~200土层硝态氮累积量所占比例最高,介于32.94%~38.07%之间;表明低灌溉处理下土壤硝态氮在土壤浅层累积较多,而高灌溉处理使更多的硝态氮淋溶至土壤深层.与2006年相比,2007年不施氮处理0~200 cm土层土壤硝态氮含量和积累量均明显减少;而施氮处理变化很小,在低灌溉处理甚至表现出硝态氮含量和积累量增加,表明施氮是土壤硝态氮累积的主要来源,而灌溉则使硝态氮向土壤深层淋溶.0~200 cm 土层土壤硝态氮累积量平均介于27.66~116.68 kg hm-2、氮素表观损失量平均介于77.35~260.96 kg hm-2,和施氮量均呈线性相关,即随施氮量增加,土壤硝态氮累积量和氮素表观损失量均增加,相关系数R2介于0.79~0.99之间,相关均显著.随施氮量增加,玉米总吸氮量和氮收获指数增加,氮的农学利用率降低,而灌溉的影响较小.施氮量超过225 kg hm-2时,地上部植株氮肥吸收利用率和籽粒氮肥吸收利用率开始有降低趋势.所以,在沙地农田,节水10%~25%的灌溉水平和225 kg hm-2的施氮水平可以在避免水肥过量投入的基础上减少土壤有机氮淋溶对地下水造成的污染威胁.  相似文献   

19.

There are few evidences on the effect of biochar on vegetable yield, nitrogen (N) and phosphorus (P) leaching losses under intensive vegetable production soil. The current field plot scale study evaluated responses of Chinese cabbage (Brassica oleracea L.) yield, N and P leaching losses using five N treatments of common N application rate according to local farmers’ practice (N100%), reducing 20% or 40% N fertilizer (N80% and N60%), and reducing 40% N fertilizer but incorporating 10 or 20 t/ha biochar (N60% + BC10 and N60% + BC20). Results showed that N80% and N60% decreased both the cabbage economic and leaf yields by 6.8%–36.3% and 27.4%–37.7%, respectively. Incorporation of biochar with reduced N fertilizer rates improved the cabbage yield, in particular the N60% + BC20 matched the yield that observed in N100% treatment. Enhanced N and P uptake capacities of cabbage shoot probably contributed the higher vegetable production under both biochar amendment schemes. Biochar application mitigated the NH4+-N and total P leaching losses by 20%–30% and 29%–32%, respectively, compared with their counterpart treatment N60%. Nevertheless, biochar exerted no influence on the NO3-N leaching. In addition, soil organic matter content was recorded with 7.4%–28.7% higher following 10–20 t/ha biochar application. In conclusion, biochar application can increase economic yield of cabbage via increasing N and P use efficiency, decrease N and P leaching losses, and improve soil quality in an intensive vegetable production system.

  相似文献   

20.
天山林区不同类型群落土壤氮素对冻融过程的动态响应   总被引:1,自引:0,他引:1  
季节性冻融过程对北方温带森林土壤氮素的转化与流失具有重要影响,但不同类型群落对冻融过程响应的差异尚不明确。通过在林地、草地、灌丛上设置系列监测样地,采用原位培养的方法,利用林冠遮挡形成的自然雪被厚度差异,监测分析了冻融期天山林区不同群落表层土壤(0—15 cm)的氮素动态及净氮矿化速率间的差异。结果表明:(1)不同类型群落土壤的铵态氮(NH+4-N)含量、微生物量氮(MBN)含量基本与土壤(5 cm)温度呈正相关,深冻期林地土壤铵态氮含量低于其他群落类型而硝态氮含量高于其他群落类型;(2)硝态氮(NO-3-N)为天山林区季节性冻融期间土壤矿质氮的主体,占比达78.4%。灌丛土壤硝态氮流失风险较大,融化末期较融化初期灌丛土壤硝态氮含量下降了64.6%;(3)冻融时期对整体氮素矿化速率影响显著,群落类型对氨化速率影响显著;(4)天山林区土壤氮素在冻结期主要以氮固持为主。通过揭示不同类型群落土壤氮素对冻融格局的响应,能够助益于对北方林区冬季土壤氮素循环的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号