首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In various bacterial strains belonging to the β-subdivision of proteobacteria which are capable of degrading chlorinated monoaromatic compounds, chlorocatechol 1,2-dioxygenase genes were detected by PCR and Southern hybridization. Using PCR primers derived from the conserved sequence motifs of chlorocatechol 1,2-dioxygenase genes tfdC, clcA and tcbC, PCR products of the expected size were obtained with the test strains, but not with negative control strains. The specificity of the PCR products was verified by hybridization using an oligonucleotide probe for an internal sequence motif which is evolutionarily conserved among chlorocatechol 1,2-dioxygenases and some other dioxygenases that catalyze the intradiol aromatic-ring-cleavage. Hybridization with the tfdC PCR product from the 2,4-D degradative plasmid pJP4 under stringent conditions revealed different extents of homology of the chlorocatechol 1,2-dioxygenase genes to the canonical tfdC sequence in the various strains. These findings were confirmed by the nucleotide sequence analysis of the tfdC-specific PCR products. From our results, we conclude that the PCR primer set is more suitable than the hybridization with pJP4-derived gene probes for the detection of diverse chlorocatechol 1,2-dioxygenase genes in proteobacteria.  相似文献   

2.
Summary A phenol and solvents degrading mixed culture from soil and sludge supplemented with Pseudomonas sp. strain B13 which harbors genes coding the sequence for chlorocatechol breakdown was acclimated to monochlorophenol degradation. Pyrocatechase activity was used as an indicator for the adaptation status of the culture.In the fully acclimated culture, strain B13 was partially replaced by hybrid strains which had acquired the chlorocatechol degrading sequence. This culture degraded changing loads of phenol, chlorophenols and cresols without accumulation of DOC (dissolved organic carbon). When high cresol concentrations were supplied simultaneously with the chlorophenols, strains were enriched which degrade cresols and 3-methylbenzoate via ortho-cleavage pathway.  相似文献   

3.
Pseudomonas putida GJ31 harbors a degradative pathway for chlorobenzene via meta-cleavage of 3-chlorocatechol. Pseudomonads using this route for chlorobenzene degradation, which was previously thought to be generally unproductive, were isolated from various contaminated environments of distant locations. The new isolates, Pseudomonas fluorescens SK1 (DSM16274), Pseudomonas veronii 16-6A (DSM16273), Pseudomonas sp. strain MG61 (DSM16272), harbor a chlorocatechol 2,3-dioxygenase (CbzE). The cbzE-like genes were cloned, sequenced, and expressed from the isolates and a mixed culture. The chlorocatechol 2,3-dioxygenases shared 97% identical amino acids with CbzE from strain GJ31, forming a distinct family of catechol 2,3-dioxygenases. The chlorocatechol 2,3-dioxygenase, purified from chlorobenzene-grown cells of strain SK1, showed an identical N-terminal sequence with the amino acid sequence deduced from cloned cbzE. In all investigated chlorobenzene-degrading strains, cbzT-like genes encoding ferredoxins are located upstream of cbzE. The sequence data indicate that the ferredoxins are identical (one amino acid difference in CbzT of strain 16-6A compared to the others). In addition, the structure of the operon downstream of cbzE is identical in strains GJ31, 16-6A, and SK1 with genes cbzX (unknown function) and the known part of cbzG (2-hydroxymuconic semialdehyde dehydrogenase) and share 100% nucleotide sequence identity with the entire downstream region. The current study suggests that meta-cleavage of 3-chlorocatechol is not an atypical pathway for the degradation of chlorobenzene.This publication is dedicated to the memory of Olga V. Maltseva, who contributed greatly to our current knowledge of biochemistry of degradative pathways for chloroaromatic compounds.This publication is dedicated to Prof. Dr. Hans G. Schlegel in honor of his 80th birthday.  相似文献   

4.
The strain Streptomyces rochei 303 (VKM Ac-1284D) is capable of utilizing 2-chloro-,2,4-,2,6-dichloro- and 2,4,6-trichlorophenols as the sole source of carbon. Its resting cells completely dechlorinated and degraded 2-, 3-chloro-; 2,4-, 2,6-, 2,3-, 2,5-, 3,4-, 3,5-dichloro-; 2,4-, 2,6-dibromo-; 2,4,6-, 2,4,5-, 2,3,4-, 2,3,5-, 2,3,6-trichlorophenols; 2,3,5,6-tetrachloro- and pentachlorophenol. During chlorophenol degradation, a stoichiometric amount of chloride ions was released and chlorohydroquinols were formed as intermediates. In cell-free extracts of S. rochei, the activity of hydroxyquinol 1,2-dioxygenase was found. The enzyme was induced with chlorophenols. Of all so far described strains degrading polychlorophenols, S. rochei 303 utilized a wider range of chlorinated phenols as the sole sourse of carbon and energy.Abbreviations CP chlorophenol - DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol - PCP pentachlorophenol - DBrP dibromophenol - CHQ chlorohydroquinol - DCHQ dichlorohydroquinol - HHQ hydroxyhydroquinol - CHHQ chlorohydroxyhydroquinol - CC chlorocatechol - TLC thin layer chromatography - GC/MC chromato-mass-spectrometry - HPLC high-performance liquid chromatography  相似文献   

5.
Alcaligenes eutrophus CH34 used benzoate as a sole source of carbon and energy, degrading it through the 3-oxoadipate pathway. All the enzymes required for this degradation were shown to be encoded by chromosomal genes. Catechol 1,2-dioxygenase activity was induced by benzoate, catechol, 4-chlorocatechol, and muconate. The enzyme is most likely a homodimer, with an apparent molecular weight of 76,000 ± 500. According to several criteria, its properties are intermediate between those of catechol 1,2-dioxygenases (CatA) and chlorocatechol 1,2-dioxygenases (ClcA). The determined K m for catechol is the lowest among known catechol and chlorocatechol dioxygenases. Similar K m values were found for para-substituted catechols, although the catalytic constants were much lower. The catechol 1,2-dioxygenase from strain CH34 is unique in its property to transform tetrachlorocatechol; however, excess substrate led to a marked reversible inhibition. Some meta- and multi-substituted catechols behaved similarly. The determined K m (or K i) values for para- or meta-substituted catechols suggest that the presence of an electron-withdrawing substituent at one of these positions results in a higher affinity of the enzyme for the ligand. Results of studies of recognition by the enzyme of various nonmetabolised aromatic compounds are also discussed. Received: 20 November 1996 / Accepted: 11 April 1996  相似文献   

6.
Genetic construction of PCB degraders   总被引:12,自引:0,他引:12  
Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. ThebphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves themeta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and theortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising thebph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.  相似文献   

7.
A bacterial isolate, Pseudomonas aeruginosa 3mT, exhibited the ability to degrade high concentrations of 3-chlorobenzoate (3-CBA, 8 g l-1) and 4-chlorobenzoate (4-CBA 12 g l-1) (Ajithkumar 1998). In this study, by delineating the initial biochemical steps involved in the degradation of these compounds, we investigated how this strain can do so well. Resting cells, permeabilised cells as well as cell-free extracts failed to dechlorinate both 3-CBA and 4-CBA under anaerobic conditions, whereas the former two readily degraded both compounds under aerobic conditions. Accumulation of any intermediary metabolite was not observed during growth as well as reaction with resting cells under highly aerated conditions. However, on modification of reaction conditions, 3-chlorocatechol (3-CC) and 4-chlorocatechol (4-CC) accumulated in 3-CBA and 4-CBA flasks, respectively. Fairly high titres of pyrocatechase II (chlorocatechol 1,2-dioxygenase) activity were obtained in extracts of cells grown on 3-CBA and 4-CBA. Meta-pyrocatechase (catechol 2,3-dioxygenase) activity against4-CC and catechol, but not against 3-CC, was also detected in low titres. Accumulation of small amounts of 2-chloro-5-hydroxy muconic semialdehyde, the meta-cleavage product of 4-CC, was detected in the medium, when 4-CBA concentration was 4 mM or greater, indicating the presence of a minor meta-pathway in strain 3mT. However, 3-CBA exclusively, and more than 99% of 4-CBA were degraded through the formation of the respective chlorocatechol, via a modified ortho-pathway. This defies the traditional view that the microbes that follow chlorocatechol pathways are not very good degraders of chlorobenzoates. 4-Hydroxybenzoatewas readily (and 3-hydroxybenzoate to a lesser extent) degraded by the strain, through the formation of protocatechuate and gentisate, respectively, as intermediary dihydroxy metabolites.  相似文献   

8.
Summary Six hundred and seventy microorganisms were screened for the ability to perform stereoselective aromatic hydroxylation reactions of industrial significance, using aniline as a model substrate. TLC and HPLC analyses with diode array detection were used to identify and characterize hydroxylase activities. Of 79 cultures belonging to the speciesAspergillus alliaceus, A. albertensis, andA. terreus, 26 strains produced 2-aminophenol. Thirty strains were able to hydroxylate aniline in thepara position. Five strains ofA. terreus produced an unidentified phenolic compound in high yield.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

9.
Alcaligenes xylosoxidans subspecies denitrificans JH1 was enriched with 2-chlorophenol from a mixed culture degrading different chloro- and methylphenols. The strain used all monochloro- and monomethylphenols apart from 2-methylphenol as sole source of energy and carbon with stoichiometric release of chloride. 4-Chlorophenol was mineralized up to a concentration of 1.3 mM. Degradation of mixtures of monochloro- and monomethylphenols occurred at least partially except for the mixture of 2-chlorophenol and 3-methylphenol. Depending upon the growth substrates used, enzymes of the ortho and/or meta cleavage pathway catalysed the degradation of the phenols. The transformation of chlorophenols was concluded to occur exclusively via the ortho cleavage pathway because no chlorocatechol 2,3-dioxygenase activity was found in chlorophenol-grown cells. Degradation of 4-methylphenol in strain JH1 occurred both by the ortho and meta cleavage pathway as indicated by the finding that the ortho- and meta-cleaving dioxygenases were expressed in 4-methylphenol-grown cells. Transformation of methylphenols by the ortho cleavage pathway led to the accumulation of methyllactones as dead-end products. Mixtures of methyl- and chlorophenols were metabolized mainly by the ortho cleavage pathway because chlorocatechols formed inactivated the constitutive catechol 2,3-dioxygenase which caused channelling of methylphenols into the ortho cleavage pathway.  相似文献   

10.
[背景] 1,3-二甲基-2-咪唑烷酮(1,3-Dimethyl-2-Imidazolidinone,DMI)作为一种强极性非质子溶剂,在生产和应用过程的环境中有稳定残留问题,存在安全隐患。[目的] 分离筛选具有降解DMI能力的微生物菌株,为清除环境中残留的DMI提供优良的微生物菌种资源。[方法] 从DMI生产区域土壤采集样品分离DMI抗性微生物,采用形态学及分子生物学鉴定确定其分类地位,并对DMI降解能力进行测定。[结果] 分离到最高能够耐受5%(体积分数) DMI的微生物菌株,形态学及分子生物学鉴定初步表明获得的菌株DT-1和DT-2为贝莱斯芽孢杆菌(Bacillus velezensis);全细胞及细胞提取液均具有降解DMI的能力;其中菌株DT-1及其细胞提取液对1%(体积分数) DMI的降解率分别达到48%和68%。[结论] 从DMI生产区域土壤中分离到具有DMI降解能力的芽孢杆菌,不但可为DMI污染的微生物治理提供优良微生物资源,而且扩展了人们对芽孢杆菌生物学功能的认识。  相似文献   

11.
Three strains of bacteria (designated as YBL1, YBL2, YBL3 respectively) capable of degrading isoproturon, 3-(4-isopropylphenyl)-1, 1-dimethylurea, were isolated from the soils of two herbicide plants. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, these strains were identified as Sphingobium sp. The optimum conditions for isoproturon degradation by these strains were pH 7.0, and temperature 30°C. Mg2+ (1 mM) enhanced the isoproturon degradation rate, while Ni2+ and Cu2+ (1 mmol l−1) inhibited isoproturon degradation significantly. These three strains also showed the ability to remove the residues of other phenylurea herbicides such as chlorotoluron, diuron and fluometuron in mineral salt culture medium. The N-demethylation was the first step of degradation of dimethylurea-substituted herbicides. Strain YBL1 was found capable of degrading both dimethylurea-substituted herbicides and methoxymethylphenyl-urea herbicides i.e. linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea). Using the PCR method, partial sequences of the catechol 1,2-dioxygenase gene were obtained from these strains.  相似文献   

12.
Eighteen mycoparasitic Trichoderma strains were tested for their ability to degrade heat-inactivated Bacillus cereus var. mycoides, B. megaterium, B. subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Serratia marcescens cells. The non-inductive and inductive ferment broths of five strains with good degrading abilities towards B. subtilis were investigated for specific degrading enzyme activities. In addition to trypsin- and chymotrypsin-like protease activities, -1,4-N-acetyl-glucosaminidase (NAGase) was also secreted. Strain Trichoderma harzianum T19 had the most outstanding degrading abilities. The extracellular degrading enzymes of this strain were separated on a Sephadex G-150 column, and their preliminary characterization was performed. The results demonstrated that muramidase-like activities are present in the ferment broth of this T. harzianum strain.  相似文献   

13.
In the chlorobenzene degrader Pseudomonas putida GJ31, chlorocatechol is formed as an intermediate and cleaved by a meta-cleavage extradiol chlorocatechol dioxygenase, which has previously been shown to be exceptionally resistant to inactivation by substituted catechols. The gene encoding this dioxygenase ( cbzE) is preceded by a gene ( cbzT) potentially encoding a ferredoxin, the function of which was studied. The cbzT gene product was overproduced in Escherichia coli and purified in recombinant form. Two homologous proteins, CdoT and AtdS, encoded by genes identified in strains degrading nitrobenzene and aniline, respectively, were also purified and characterized. All three proteins showed spectroscopic properties typical for [2Fe-2S] ferredoxins. The chlorocatechol dioxygenase from strain GJ31 (CbzE) was fully inactivated when 4-methylcatechol was used as substrate. Inactivated CbzE could be rapidly reactivated in vitro in the presence of purified CbzT and a source of reductant. It is inferred that the ability of strain GJ31 to metabolize both chlorobenzene and toluene might depend on the regeneration of the chlorocatechol dioxygenase activity mediated by CbzT. Three CbzT-like ferredoxins, including AtdS, were found to be competent in the reactivation of CbzE, whereas XylT, a protein known to mediate reactivation of the catechol dioxygenase from P. putida mt2 (XylE), was ineffective. Accordingly, CbzT formed a covalent complex with CbzE when cross-linked with a carbodiimide, whereas XylT did not. In the reverse situation, CbzT was found to reactivate XylE as efficiently as XylT and formed an heterologous covalent complex with this enzyme upon cross-linking. We conclude that CbzT, CdoT and AtdS are isofunctional ferredoxins that appear to be involved in the reactivation of their cognate catechol dioxygenases. Based on primary structure comparisons, residues of the ferredoxins possibly involved in the molecular interaction with catechol dioxygenases were identified and their significance is discussed.  相似文献   

14.
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by -Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.  相似文献   

15.
Four bacterial strains (CA26, CA28, CA37, and CA45), which all were able to use aniline, 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) as sole sources of carbon, nitrogen and energy, were isolated after enrichment in aerated soil columns and identified as Pseudomonas acidovorans strains. In addition strains CA26 and CA45 were able to degrade 2-chloroaniline (2-CA) at very low rates. At 25°C strain CA28 was grown on aniline and 3-CA with generation times of 3.0 and 7.7 h, respectively, and exhibited complete mineralization of these substrates in degradation rates of 2.25 mmol aniline and 1.63 mmol 3-CA g-1 of biomass per hour, respectively. Degradation of 4-CA occurred at 1.54 mmol 4-CA g-1 of biomass per hour and a generation time of 18.7 h but, in contrast, was not complete due to formation of minor amounts of chlorohydroxymuconic semialdehyde, a meta-cleavage product of 4-chlorocatechol. The initial attack on the substrate, the formation of corresponding chlorocatechols from 3-CA and 4-CA, was found to be the rate-limiting degradation step. Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with aniline and chloroaniline pregrown cells. Further degradation was shown to be initialized by catechol dioxygenases.Non-standard abbreviations CA chloroaniline - DCA dichloroaniline - ECM enrichment and cultivation medium - CFU colony forming unit  相似文献   

16.
Summary Toluene degrading (xyl) genes on a Pseudomonas TOL plasmid pWWO are located within a 39-kb DNA portion. The 56-kb region including these xyl genes and its 17-kb derivative with a deletion of the internal 39-kb portion transposed to various sites on target replicons such as pACYC184 and R388 in escherichia coli recA strains. Thus the 56- and 17-kb regions were designated Tn4651 and Tn4652, respectively. Genetic analysis of Tn4652 demonstrated that its transposition occurs by a two-step process, namely, cointegrate formation and its subsequent resolution. The presence in cis of DNA sequences of no more than 150 bp at both ends of Tn4652 was prerequisite for cointegrate formation, and this step was mediated by a trans-acting factor, transposase, which was encoded in a 3.0-kb segment at one end of the transposon. Cointegrate resolution took place site-specifically within a 200-bp fragment, which was situated 10 kb away from the transposase gene. Based on the stability of cointegrates formed by various mini-Tn4652 derivatives, it was shown that the cointergrate resolution requires two trans-acting factors encoded within 1.0- and 1.2-kb fragments that encompass the recombination site involved in the resolution.  相似文献   

17.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

18.
The raw extracts of a series of microorganisms were screened for the presence of acetyl-coenzyme A: arylamine N-acetyltransferase (AAAT) using a radioactive assay with 3H-acetyl-coenzyme A and aniline as substrates. Enzyme activities were primarily detected in the soluble fractions of Bacillus and Nocardia species, and in some further soil organisms. Only strains of Bacillus cereus were able to acetylate 4-nitroaniline and 3,5-dimethyl-4-nitroaniline. The fermentation conditions for the production of the enzyme were optimized. The AAAT from one strain of Bacillus cereus was purified 24-fold and characterized.Abbreviations AAAT acetyl-coenzyme A: arylamine N-acetyltransferase - AcP acetylphosphate - CoA coenzyme A - EDTA ethylenediaminetetra-acetic acid - PTA phosphotransacetylase  相似文献   

19.
Summary Several nopaline degrading strains and one octopine degrading strain are shown to loose oncogenicity as well as the ability to utilize these guanidine compounds when they are cured of their TI plasmid. To investigate whether the specific genes involved in the utilization of one or the other compound are located on the plasmid, plasmid-transfer experiments have been performed.The plasmid from a nopaline degrading strain has been transferred to a naturally non oncogenic Agrobacterium namely A. radiobacter. Furthermore, the plasmid from an octopine degrading strain has been transferred to a plasmid-cured strain which originally had the capacity to utilize nopaline. Both kinds of experiments prove that the TI plasmid determines the strain specificity with regard to the utilization of either octopine or nopaline.They also demonstrate that the synthesis of either octopine or nopaline in crown gall cells is also determined by genes located on the TI plasmid harboured by the transforming A. tumefaciens strains.  相似文献   

20.
Aims: To determine the kinetics of substrate fluxes in a microbial community in order to elucidate the roles of the community members. Methods and Results: The kinetics of substrate sharing in a bacterial consortium were measured by a new analytical approach combining immunostaining, stable isotope probing and fluorescence‐activated cell sorting (FACS). The bacterial consortium, consisting of four strains and growing on 4‐chlorosalicylate (4‐CS), was pulse‐dosed with the degradation intermediate [U‐13C]‐4‐chlorocatechol (4‐CC). Cells were stained with strain‐specific antibodies sorted by FACS and the 13C‐incorporation into fatty acids of the two most abundant members of the community was determined by isotope ratio mass spectrometry. From the two most abundant strains, the primary degrader Pseudomonas reinekei MT1 incorporated the labelled substrate faster than strain Achromobacter spanius MT3 but the maximal incorporation in strain MT3 was almost three times higher than in MT1. Conclusions: It has been reported that strain MT1 produces 4‐CC as an intermediate but has a lower LD50 for it than strain MT3; therefore, MT3 still degrades 4‐CC when the concentrations of 4‐CC are already too toxic, even lethal, for MT1. By degrading 4‐CC, produced by MT1, MT3 protects the entire community against this toxin. The higher affinity but lower tolerance of strain MT1 for 4‐chlorocatechol compared to strain MT3 explains the complementary function these two strains have in the consortium adding exceptional stability to the entire community. Significance and Impact of the Study: The novel approach can reveal carbon fluxes in microbial communities generating quantitative data for systems biology of the microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号