首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The food-borne pathogen Campylobacter jejuni is dependent on a functional flagellum for motility and the export of virulence proteins that promote maximal host cell invasion. Both the flagellar and non-flagellar proteins exported via the flagellar type III secretion system contain a sequence within the amino-terminus that directs their export from the bacterial cell. Accordingly, we developed a genetic screen to identify C. jejuni genes that encode a type III secretion amino-terminal sequence that utilizes the flagellar type III secretion system of Yersinia enterocolitica and a phospholipase reporter ( yplA ). We screened a library of 321 C. jejuni genes and identified proteins with putative type III secretion amino-terminal sequences. One gene identified by the screen was Cj1242. We generated a mutation in Cj1242 , and performed growth rate, motility, secretion and INT 407 cell adherence and internalization assays. The C. jejuni Cj1242 mutant was not altered in growth rate or motility when compared with the wild-type strain, but displayed an altered secretion profile and a reduction in host cell internalization. Based on the phenotype of the C. jejuni Cj1242 mutant, we designated the protein Campylobacter invasion antigen C (CiaC). Collectively, our findings indicate that CiaC is a potentially important virulence factor.  相似文献   

11.
12.
13.
14.
The role of the flagellum and motility in the virulence of the marine fish pathogen Vibrio anguillarum was examined. Non-motile mutants were generated by transposon mutagenesis. Infectivity studies revealed that disruption of the flagellum and subsequent loss of motility correlated with an approximate 500-fold decrease in virulence when fish were inoculated by immersion in bacteria-containing water. However, the flagellar filament and motility were not required for pathogenicity following intraperitoneal injection of fish. The transposon-insertion site for six mutants was determined by cloning and sequencing of the Vibrio DNA flanking the transposon. V. anguillarum genes whose products showed strong homology to proteins with an established role in flagellum biosynthesis were identified. One of the aflagellate mutants had a transposon insertion in the rpoN gene of V. anguillarum . This rpoN mutant failed to grow at low concentrations of available iron and was avirulent by both the immersion and intraperitoneal modes of inoculation. A chemotaxis gene, cheR , was located upstream of one transposon insertion and an in-frame deletion was constructed in the coding region of this gene. The resulting non-chemotactic mutant exhibited wild-type pathogenicity when injected intraperitoneally into fish but showed a decrease in virulence similar to that seen for the non-motile aflagellate mutants following immersion infection. Hence, chemotactic motility is a required function of the flagellum for the virulence of V. anguillarum  相似文献   

15.
Alternative sigma factors and the regulation of flagellar gene expression   总被引:54,自引:10,他引:44  
  相似文献   

16.
In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative sigma factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria.  相似文献   

17.
Flagellar motility is essential for the ability of Helicobacter pylori to colonize the gastric mucosa. Expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors sigma54 and sigma28 and the anti-sigma28 factor FlgM. The protein-protein interaction map of H. pylori, which is based on a high-throughput two-hybrid screen (Rain et al., 2001. Nature 409, 211-215) indicated a protein-protein interaction between the gene product of ORF hp137 and both the histidine kinase HP244 and the flagellar hook protein HP908. We hypothesized that HP137 might be involved in a feedback regulatory mechanism controlling the activity of histidine kinase HP244. Here we demonstrate that HP137 does not participate in the regulation of flagellar gene expression, neither in H. pylori nor in the closely related bacterium Campylobacter jejuni.  相似文献   

18.
19.
20.
HP0958 is an essential motility gene in Helicobacter pylori   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号