首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Studies were initiated to determine the extent to which reduced glutathione (GSH) may be involved in the capacity of cultured rat embryos to develop heat-induced tolerance to the deleterious effects of exposure to high temperatures (heat shock). Investigations of the modulation of dysmorphogenic responses of embryos to heat shock (43 degrees C, 30 min) as well as to the expression of the hsp70 gene and subsequent formation of hsps indicated that the acquisition of thermotolerance by rat embryos could be significantly influenced by the inhibition of GSH synthesis. Treatment of conceptuses with L-buthionine-S,R-sulfoximine (BSO) reduced intracellular GSH concentrations and compromised the capacity of embryos to mount a thermotolerance response as assessed by alterations in indices of growth and development. Embryonic thermotolerance elicited by preexposure to 42 degrees C for 30 min was accompanied by increases in GSH to levels greater than those measured in control embryos at 37 degrees C just prior to the subsequent 43 degrees C heat exposure. Expression of hsp70 mRNA was detectable soon after elevation of the temperature to 42 degrees C and reached its highest level of accumulation 1.5 hr after the 43 degrees C heat shock. BSO treatment had little if any effect on hsp70 message levels or on the synthesis of hsp70. The fact that BSO-treatment attenuated the thermotolerance response but did not produce a decrease in hsp70 RNA or the synthesis of hsp70 suggests that hsp70 alone is not sufficient to confer thermotolerance upon cultured rat embryos.  相似文献   

3.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

4.
In this study, we have employed whole-mount, in situ hybridization to study the spatial pattern of hsc70 and hsp70 mRNA accumulation in normal and heat shocked embryos during Xenopus laevis development. Our findings revealed that hsc70 mRNA was constitutively present in a global fashion throughout the embryo and was not heat inducible. Accumulation of hsp70 mRNA, however, was detected only in heat shocked embryos. Furthermore, hsp70 mRNA accumulation was enriched in a tissue-specific manner in X. laevis tailbud embryos within 15 minutes of a 33 degrees C heat shock. Abundant levels of heat shock-induced hsp70 mRNA were detected in the head region, including the lens placode, the cement gland, and in the somitic region and proctodeum. Preferential heat-induced accumulation of hsp70 mRNA was first detected at a heat shock temperature of 30 degrees C. Placement of embryos at 22 degrees C after a 1-hour, 33 degrees C heat shock resulted in decreased hsp70 mRNA with time, but the message persisted in selected tissues, including the lens placode and somites. Treatment of tailbud embryos with either sodium arsenite or zinc chloride induced a tissue-specific enrichment of hsp70 mRNA in the lens placode and somitic region. These studies reveal the complex nature of the heat shock response in different embryonic tissues and suggest the presence of regulatory mechanisms that lead to a stressor-induced, tissue-specific enrichment of hsp70 mRNA.  相似文献   

5.
We employed whole-mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock-induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33 degrees C heatshock. The lowest temperature capable of inducing this pattern was 30 degrees C. Placement of embryos at 22 degrees C following a 1-h 33 degrees C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues.  相似文献   

6.
J L Zimmerman  W Petri  M Meselson 《Cell》1983,32(4):1161-1170
During normal development in D. melanogaster, messenger RNAs for three of the seven heat shock proteins (hsp83, hsp28 and hsp26) accumulate in adult ovaries and are abundant in embryos until blastoderm. The three mRNAs appear to originate in nurse cells and subsequently pass, during stages 10-11, into the oocyte. Little if any of the four other heat shock mRNAs is present in unshocked ovaries or embryos at any time examined. Pre-blastoderm embryos fail to accumulate these heat shock mRNAs even if subjected to heat shock. The accumulation in normal oogenesis of mRNAs for only three of the seven heat shock proteins indicates the existence of differential, possibly multiple controls of heat shock gene expression, and suggests that heat shock proteins hsp83, hsp28 and hsp26 function in the oocyte or early embryo.  相似文献   

7.
8.
9.
Basigin is a member of the immunoglobulin superfamily and a key molecule related to mouse blastocyst implantation. Whether preimplantation mouse embryos express basigin mRNA is still unknown. The aim of this study was to use a quantitative competitive polymerase chain reaction to assess quantitatively the levels of basigin mRNA in mouse oocyte and preimplantation embryos. Basigin mRNA was detected in the oocyte and all the stages of preimplantation embryos. The levels of basigin mRNA were 0.0606 +/- 0.0282 in the oocyte, 0.0102 +/- 0.0036 in the zygote, 0.0007 +/- 0.0003 in the 2-cell embryo, 0.0031 +/- 0.0017 in the 4-cell embryo, 0.0084 +/- 0.0024 in the 8-cell embryo, 0.0537 +/- 0.0121 in the morula and 0.0392 +/- 0.0161 attomoles in the blastocyst, respectively. The levels of basigin mRNA in the oocyte, morula and blastocyst were significantly higher than those in the zygote and embryos at the 2-cell, 4-cell and 8-cell stages. The high level of basigin expression in the blastocyst may play a role during embryo implantation.  相似文献   

10.
11.
This study evaluated the expression of heat shock protein 70 kD (hsp70) in broiler chicken embryos subjected to cold (Experiment I) or high incubation temperature (Experiment II). In each experiment, fertile eggs were distributed in three incubators kept at 37.8 degrees C. At day 13 (D13), D16, and D19 of incubation, the embryos were subjected to acute cold (32 degrees C) or heat (40 degrees C) for 4-6 hr. Immediately after cold or heat exposure, samples from the liver, heart, breast muscle, brain, and lungs of 40 embryos were taken per age and treatment (control or stressed embryos). A tissue pool from 10 embryos was used as 1 replication. The levels of hsp70 in each tissue sample was quantified by Western blot analysis. The data were analyzed in a 3 x 2 factorial arrangement of treatments with four replications. hsp70 was detected in all embryo tissues, and the brain contained 2- to 5-times more hsp70 protein compared to the other tissues in either cold or heat stressed embryos. hsp70 increases were observed in the heart and breast muscle of cold stressed embryos at D16 and D19, respectively. Heat stressed embryos showed an increase of hsp70 in the heart at D13 and D19, and in the lung at D19 of incubation. Younger embryos had higher hsp70 synthesis than older embryos, irrespective of the type of thermal stressor. The results indicate that the expression of hsp70 in broiler chicken embryos is affected by cold and heat distress, and is tissue- and age-dependent.  相似文献   

12.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

13.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

14.
Because body condition can affect reproduction, research has focused on the role of leptin, a body condition signal, in regulation of reproductive function. Objectives of this study were to determine if leptin supplementation directly affects 1) ovarian follicle growth and function, 2) oocyte maturation, or 3) preimplantation embryo development. Follicles cultured in the presence of recombinant mouse leptin resulted in a significant decrease in rate of follicle, but not oocyte, growth in a dose-dependent manner, with higher doses of leptin inhibiting growth. Leptin was also found to significantly increase stimulated progesterone, estradiol, and testosterone production/secretion by cultured follicles in a dose-dependent manner, with higher concentrations of leptin significantly increasing steroidogenesis. Culture of fully grown cumulus-enclosed germinal vesicle-intact (GV) mouse oocytes in the presence of increasing concentrations of leptin (0, 12.5, 25, 50, 100 ng/ml) had no effect on germinal vesicle breakdown (GVBD) or development to metaphase II (MII). Similarly, fully grown denuded oocytes showed no difference in GVBD at any concentration of leptin. However, maturation of denuded oocytes with 100 ng/ml leptin resulted in significantly reduced development to MII compared with oocytes matured with 0 or 12.5 ng/ml leptin. Culture of one-cell mouse embryos in increasing concentrations of leptin had no effect on cleavage or blastomere degeneration at 24 h of culture. Exposure of embryos for the first 96 h of development to increasing concentrations of leptin did not significantly affect total or expanded blastocyst development or hatching of blastocysts from zona pellucida. These results indicate leptin directly enhances insulin and gonadotropin-stimulated ovarian steroidogenesis, compromises denuded oocyte maturation, yet has no direct effect on preimplantation embryo development.  相似文献   

15.
Elevation of the incubation temperature of Xenopus laevis neurulae from 22 to 33-35 degrees C induced the accumulation of heat shock protein (hsp) 70 mRNA (2.7 kilobases (kb)) and a putative hsp 87 mRNA (3.2 kb). While constitutive levels of both hsp mRNAs were detectable in unfertilized eggs and cleavage-stage embryos, heat-induced accumulation was not observed until after the mid-blastula stage. Exposure of Xenopus laevis embryos to other stressors, such as sodium arsenite or ethanol, also induced a developmental stage-dependent accumulation of hsp 70 mRNA. To characterize the effect of temperature on hsp 70 mRNA induction, neurulae were exposed to a range of temperatures (27-37 degrees C) for 1 h. Heat-induced hsp 70 mRNA accumulation was first detectable at 27 degrees C, with relatively greater levels at 30-35 degrees C and lower levels at 37 degrees C. A more complex effect of temperature on hsp 70 mRNA accumulation was observed in a series of time course experiments. While continuous exposure of neurulae to heat shock (27-35 degrees C) induced a transient accumulation of hsp 70 mRNA, the temporal pattern of hsp 70 mRNA accumulation was temperature dependent. Exposure of embryos to 33-35 degrees C induced maximum relative levels of hsp 70 mRNA within 1-1.5 h, while at 30 and 27 degrees C peak hsp 70 mRNA accumulation occurred at 3 and 12 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
P E Mirkes  B Doggett 《Teratology》1992,46(3):301-309
A monoclonal antibody to the 72 kDa heat shock protein and Western blot analysis were used to determine the induction, accumulation and turnover of hsp 72 after day 10 rat embryos were exposed to elevated temperatures (40 degrees-43 degrees C) for various lengths of time (2.5 minutes to 18 hours). Embryos exposed to temperatures that exceed the normal culture temperature (37 degrees C) by 4 degrees C or more for as little as 2.5 minutes (43 degrees C) or 15 minutes (41, 42 degrees C) synthesized and accumulated detectable amounts of heat-inducible hsp 72. Hsp 72 could not be detected by Western blot analysis of proteins from embryos cultured at 40 degrees C or below. Once induced, hsp 72 can be detected in embryos for 24-48 hours after they are removed from the hyperthermic conditions and returned to normothermic conditions. Our results also indicate that hsp 72 is induced by all hyperthermic exposures that induce alterations in rat embryo growth and development; therefore, hsp 72 is a potential biomarker for heat-induced embryotoxicity.  相似文献   

17.
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.  相似文献   

18.
We employed whole‐mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock‐induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33°C heatshock. The lowest temperature capable of inducing this pattern was 30°C. Placement of embryos at 22°C following a 1‐h 33°C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues. Dev. Genet. 25:365–374, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
Ceramide is a second messenger induced by various cellular insults that plays a regulatory role in apoptosis. The objective of the present study was to determine whether ceramide signaling can occur in the preimplantation embryo by testing (1) effects of ceramide on development, cytokinesis, and apoptosis and (2) whether heat shock, which can induce apoptosis in embryos, causes activation of neutral or acidic sphingomyelinases responsible for generation of ceramide. Treatment of embryos > or =16 cells collected at Day 5 after insemination with 50 microM C(2)-ceramide increased caspase-9 activity and the proportion of blastomeres undergoing apoptosis but did not increase caspase-8 activity. Induction of apoptosis was more extensive when culture with ceramide was for 24 hr than for 9 hr. Ceramide also reduced the proportion of embryos that developed to the blastocyst stage when exposure was for 24 hr. At the two-cell stage, a period in development when apoptosis responses are blocked, culture of embryos with ceramide did not increase caspase-9 activity or the proportion of blastomeres that were apoptotic. However, culture with ceramide for 24 hr reduced cell proliferation and caused an increase in multinucleated cells because of inhibition of cytokinesis. Exposure of Day 5 embryos to a heat shock of 41 degrees C for 15 hr increased neutral sphingomyelinase activity but did not change acid sphingomyelinase activity. In conclusion, ceramide can regulate embryo development and apoptosis in a time and stage-of-development dependent manner and ceramide generation can be activated by cellular insult. Thus, the ceramide signaling pathway is present in the preimplantation embryo.  相似文献   

20.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号