首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interference with viral infection by defective RNA replicase.   总被引:10,自引:6,他引:10  
RNA-dependent RNA and DNA polymerases have a conserved segment, Tyr-X-Asp-Asp (G. Karmer and P. Argos, Nucleic Acids Res. 12:7269-7282, 1984). To investigate the function of this segment, we changed the Gly residue at position 357 in the conserved sequence Tyr-356-Gly-357-Asp-358-Asp-359 of the replicase of RNA coliphage Q beta to Ala, Ser, Pro, Met, or Val and examined the replicase activity in vivo. Cells carrying the variant plasmids lost the replicase activity and severely inhibited the proliferation of phage Q beta (group III) and related phage SP (group IV) by suppressing phage RNA synthesis. In contrast, substitution of the Gly residue at 390 showed only a slight inhibitory effect, although replicase activity was also lost. These results suggest that the cells harboring an altered replicase at the conserved segment can interfere specifically with the wild-type phage and different but related phage infections.  相似文献   

2.
C H Kim  C C Kao 《RNA (New York, N.Y.)》2001,7(10):1476-1485
Brome mosaic virus (BMV) genomic minus-strand RNA synthesis requires an RNA motif named stem-loop C (SLC). An NMR-derived solution structure of SLC was reported by Kim et al. (Nature Struc Biol, 2000, 7:415-423) to contain three replicase-recognition elements, the most important of which is a stable stem with a terminal trinucleotide loop, 5'AUA3'. The 5'-most adenine of the triloop is rigidly fixed to the stem helix by interactions that require the 3'-most adenine, which is called a clamped adenine motif. However, a change of the 3' adenine to guanine (5'AUG3') unexpectedly directed RNA synthesis at 130% of wild type (Kim et al., Nature Struc Biol, 2000, 7:415-423). To understand how RNA with the AUG mutation maintains interaction with the BMV replicase, we used NMR and other biophysical techniques to elucidate the solution conformation of a 13-nt RNA containing the AUG triloop, called S-AUG. We found that S-AUG has a drastically different loop conformation in comparison to the wild type, as evidenced by an unusual C x G loop-closing base pair. Despite the conformational change, S-AUG maintains a solution-exposed adenine similar to the clamped adenine motif found in the wild type. Biochemical studies of the 5'AUG3' loop with various substitutions in the context of the whole SLC construct confirm that the clamped adenine motif exists in S-AUG remains a primary structural feature required for RNA synthesis by the BMV replicase.  相似文献   

3.
Serva S  Nagy PD 《Journal of virology》2006,80(5):2162-2169
Plus-strand RNA virus replication occurs via the assembly of viral replicase complexes involving multiple viral and host proteins. To identify host proteins present in the cucumber necrosis tombusvirus (CNV) replicase, we affinity purified functional viral replicase complexes from yeast. Mass spectrometry analysis of proteins resolved by two-dimensional gel electrophoresis revealed the presence of CNV p33 and p92 replicase proteins as well as four major host proteins in the CNV replicase. The host proteins included the Ssa1/2p molecular chaperones (yeast homologues of Hsp70 proteins), Tdh2/3p (glyceraldehyde-3-phosphate dehydrogenase, an RNA-binding protein), Pdc1p (pyruvate decarboxylase), and an unknown approximately 35-kDa acidic protein. Copurification experiments demonstrated that Ssa1p bound to p33 replication protein in vivo, and surface plasmon resonance measurements with purified recombinant proteins confirmed this interaction in vitro. The double mutant strain (ssa1 ssa2) showed 75% reduction in viral RNA accumulation, whereas overexpression of either Ssa1p or Ssa2p stimulated viral RNA replication by approximately threefold. The activity of the purified CNV replicase correlated with viral RNA replication in the above-mentioned ssa1 ssa2 mutant and in the Ssa overexpression strains, suggesting that Ssa1/2p likely plays an important role in the assembly of the CNV replicase.  相似文献   

4.
P D Nagy  C Zhang    A E Simon 《The EMBO journal》1998,17(8):2392-2403
Molecular mechanisms of RNA recombination were studied in turnip crinkle carmovirus (TCV), which has a uniquely high recombination frequency and non-random crossover site distribution among the recombining TCV-associated satellite RNAs. To test the previously proposed replicase-driven template-switching mechanism for recombination, a partially purified TCV replicase preparation (RdRp) was programed with RNAs resembling the putative in vivo recombination intermediates. Analysis of the in vitro RdRp products revealed efficient generation of 3'-terminal extension products. Initiation of 3'-terminal extension occurred at or close to the base of a hairpin that was a recombination hotspot in vivo. Efficient generation of the 3'-terminal extension products depended on two factors: (i) a hairpin structure in the acceptor RNA region and (ii) a short base-paired region formed between the acceptor RNA and the nascent RNA synthesized from the donor RNA template. The hairpin structure bound to the RdRp, and thus is probably involved in its recruitment. The probable role of the base-paired region is to hold the 3' terminus near the RdRp bound to the hairpin structure to facilitate 3'-terminal extension. These regions were also required for in vivo RNA recombination between TCV-associated sat-RNA C and sat-RNA D, giving crucial and direct support for a replicase-driven template-switching mechanism of RNA recombination.  相似文献   

5.
In previous work Qβ replicase has been used to synthesize labelled 5′ terminal segments of Qβ plus or minus strands of defined length. A procedure has now been developed which allows resynchronization of Qβ replicase at an internal position and synthesis of a labelled minus-strand segment complementary to the coat cistron ribosome binding site and the intercistronic region between the A2 (maturation) and the coat cistron. Resynchronization is accomplished by binding a ribosome to Qβ RNA and allowing Qβ replicase to initiate and elongate up to the ribosome, using unlabelled ribonucleoside triphosphates. The ribosome is dissociated by EDTA treatment and the EDTA is removed. The replicating complex remains functional after this treatment, and addition of labelled substrates leads to synchronized elongation. The radioactive part of the product recovered after a short elongation period with labelled substrates was shown to be complementary to the coat protein ribosome binding site.  相似文献   

6.
7.
The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) genomic RNA was found to fold into a series of stem-loop structures including a pseudoknot structure. These structures were demonstrated to be important for viral RNA replication and were believed to be recognized by the replicase (C.-P. Cheng and C.-H. Tsai, J. Mol. Biol. 288:555-565, 1999). Electrophoretic mobility shift and competition assays have now been used to demonstrate that the Escherichia coli-expressed RNA-dependent RNA polymerase domain (Delta 893) derived from BaMV open reading frame 1 could specifically bind to the 3' UTR of BaMV RNA. No competition was observed when bovine liver tRNAs or poly(I)(C) double-stranded homopolymers were used as competitors, and the cucumber mosaic virus 3' UTR was a less efficient competitor. Competition analysis with different regions of the BaMV 3' UTR showed that Delta 893 binds to at least two independent RNA binding sites, stem-loop D and the poly(A) tail. Footprinting analysis revealed that Delta 893 could protect the sequences at loop D containing the potexviral conserved hexamer motif and part of the stem of domain D from chemical cleavage.  相似文献   

8.
9.
The 3' end of brome mosaic virus RNA contains a tRNA-like sequence that directs its RNA synthesis. A stem loop structure in this sequence, stem loop C (SLC), was investigated using NMR, and correlated with its ability to direct RNA synthesis by its replicase. SLC consists of two discrete domains, a flexible stem with an internal loop and a rigid stem containing a 5'-AUA-3' triloop. Efficient RNA synthesis requires the sequence on only one side of the flexible stem and a specific compact conformation of the triloop. A high resolution structure of the triloop places the 5' adenine out in solution, and the 3' adenine within the triloop, held tightly through stacking and unusual hydrogen bonds. This high resolution structure of an RNA promoter from a (+)-strand RNA virus provides new insights into how the RNA-dependent RNA polymerase binds to the RNA to initiate synthesis.  相似文献   

10.
Purified recombinant viral replicases are useful for studying the mechanism of viral RNA replication in vitro. In this work, we obtained a highly active template-dependent replicase complex for Cucumber necrosis tombusvirus (CNV), which is a plus-stranded RNA virus, from Saccharomyces cerevisiae. The recombinant CNV replicase showed properties similar to those of the plant-derived CNV replicase (P. D. Nagy and J. Pogany, Virology 276:279-288, 2000), including the ability (i). to initiate cRNA synthesis de novo on both plus- and minus-stranded templates, (ii). to generate replicase products that are shorter than full length by internal initiation, and (iii). to perform primer extension from the 3' end of the template. We also found that isolation of functional replicase required the coexpression of the CNV p92 RNA-dependent RNA polymerase and the auxiliary p33 protein in yeast. Moreover, coexpression of a viral RNA template with the replicase proteins in yeast increased the activity of the purified CNV replicase by 40-fold, suggesting that the viral RNA might promote the assembly of the replicase complex and/or that the RNA increases the stability of the replicase. In summary, this paper reports the first purified recombinant tombusvirus replicase showing high activity and template dependence, a finding that will greatly facilitate future studies on RNA replication in vitro.  相似文献   

11.
Poliovirus replicase can be isolated in a form which depends on either oligo(U) or on a host cell protein for the initiation of copying of poliovirion (plus strand) RNA. The product of replicase reactions--initiated either with host factor or with oligo(U)--includes full length (35 S) RNA molecules, largely in double-stranded form, which contain the ribonuclease T1-resistant oligonucleotides of the poliovirus minus strand. For the oligo(U)-stimulated reaction, it is shown that the oligo(U) primer is covalently associated with full length product at its 5'-end. For either the host factor- or oligo(U)-dependent reactions, full length molecules appear only after 15 min of synthesis. The fraction of 35 S product is increased by raising the concentration of the limiting nucleoside triphosphate. The reaction is inhibited by as little as 100 mM salt, although it is stimulated by low (20 mM) salt concentrations. Zinc stimulates overall synthesis, but not the rate of appearance of full length molecules; the reaction is inhibited by agents which chelate zinc. Although synthesis of full length products occurs much more slowly than in the infected cell, this soluble system appears to mimic quite faithfully the initial steps of poliovirus replication.  相似文献   

12.
UR-hel, a chimeric virus obtained by replacement of the RNA helicase domain of tobacco mosaic virus (TMV)-U1 replicase with that from the TMV-R strain, could replicate similarly to TMV-U1 in protoplasts but could not move from cell to cell (K. Hirashima and Y. Watanabe, J. Virol. 75:8831-8836, 2001). It was suggested that TMV recruited both the movement protein (MP) and replicase for cell-to-cell movement by unknown mechanisms. Here, we found that a recombinant, UR-hel/V, in which the nonconserved region was derived from TMV-R in addition to the RNA helicase domain of replicase, could move from cell to cell. We also analyzed revertants isolated from UR-hel, which recovered cell-to-cell movement by their own abilities. We found amino acid substitutions responsible for phenotypic reversion only in the nonconserved region and/or RNA helicase domain but never in MP. Together, these data show that both the nonconserved region and the RNA helicase domain of replicase are involved in cell-to-cell movement. The RNA helicase domain of tobamovirus replicase possibly does not interact directly with MP but interacts with its nonconserved region to execute cell-to-cell movement.  相似文献   

13.
Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1.  相似文献   

14.
We previously reported the utilization of antisense RNA in the development of a novel immune system against RNA coliphage SP proliferation (Hirashima et al. [1986] Proc. Natl. Acad. Sci. U.S. 83, 7726-7730). We attempted to determine the most effective (i.e., those eliciting antiviral activity) sequences for targeting micRNAs within the 5'-terminal noncoding region of 54 nucleotides (nt). It was found that a 30-nt micRNA against the sequence from base 32 to 61 exhibited nearly complete inhibition of phage production. Upon further dissection of this sequence, it was concluded that the most effective micRNA against phage SP production should contain the sequences complementary to the Shine-Dalgarno (SD) sequence of the first gene and its 13-nt upstream sequence. The addition of downstream sequences had little effect. These results suggest that the micRNA functions by preventing the binding of ribosomes to the SD sequence of the first gene. The addition of further upstream sequences had a significant negative effect on the micRNA function, indicating that the removal of such impeditive sequences from a micRNA is an important strategy for the development of a potent micRNA immune system.  相似文献   

15.
16.
Terminal adenylation in the synthesis of RNA by Q beta replicase   总被引:10,自引:0,他引:10  
We investigated the apparent requirement that Q beta replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Q beta replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'-terminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Q beta replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur.  相似文献   

17.
The kinetics of the RNA replication reaction by Qbeta replicase were investigated. Qbeta replicase is an RNA-dependent RNA polymerase responsible for replicating the RNA genome of coliphage Qbeta and plays a key role in the life cycle of the Qbeta phage. Although the RNA replication reaction using this enzyme has long been studied, a kinetic model that can describe the entire RNA amplification process has yet to be determined. In this study, we propose a kinetic model that is able to account for the entire RNA amplification process. The key to our proposed kinetic model is the consideration of nonproductive binding (i.e. binding of an enzyme to the RNA where the enzyme cannot initiate the reaction). By considering nonproductive binding and the notable enzyme inactivation we observed, the previous observations that remained unresolved could also be explained. Moreover, based on the kinetic model and the experimental results, we determined rate and equilibrium constants using template RNAs of various lengths. The proposed model and the obtained constants provide important information both for understanding the basis of Qbeta phage amplification and the applications using Qbeta replicase.  相似文献   

18.
Interactions of Q beta replicase with Q beta RNA   总被引:15,自引:0,他引:15  
The interactions of Qβ replicase with Qβ RNA were investigated by treating replicase-Qβ RNA complexes under various conditions with ribonuclease T1, and by characterizing enzyme-bound RNA fragments recovered by a filter binding technique. Evidence for replicase binding at two internal regions of Qβ RNA was obtained. One region (at about 1250 to 1350 nucleotides from the 5′ end) overlaps with the initiation site for coat protein synthesis; this interaction is thought to be inessential for template activity but rather to be involved in the regulation of protein synthesis. Binding to this site (called the S-site) requires moderate concentrations of salt but no magnesium ions. The other region (at about 2550 to 2870 nucleotides from the 5′ end) is probably essential for template activity; binding to this site (called the M-site) is dependent on the presence of magnesium ions. The nucleotide sequences of the RNA fragments from the two sites were determined and found to have no common features. Under the conditions tested, replicase binding at the 3′ end of Qβ RNA could not be demonstrated, except when initiation of RNA synthesis was allowed to occur in the presence of GTP and host factor. If instead of intact Qβ RNA, a complete RNAase T1 digest of Qβ RNA was allowed to bind to replicase, oligonucleotides from the S-site and the M-site, and oligonucleotides from a region close to the 3′ end, were found to have the highest affinity to the enzyme.The RNA fragments recovered in highest yield, M-2 and S-3 from the M and S-site, respectively, were isolated on a preparative scale and their enzyme binding properties were studied. In competition assays with random RNA fragments of the same size, selective binding was observed both for the M and the S-site fragment. Partial competition for replicase binding was found if M-2 and S-3 were presented simultaneously to the enzyme. Either fragment, if preincubated with replicase, caused a specific inhibition of initiation of Qβ RNA-directed RNA synthesis, without inhibiting the poly(rC)-directed reaction.The results are discussed in terms of a model of replicase-Qβ RNA recognition. Template specificity is attributed to binding of internal RNA regions to replicase, resulting in a specific spatial orientation of the RNA by which the inherently weak, but essential, interaction at the 3′ end is allowed to occur and to lead to the initiation of RNA synthesis.  相似文献   

19.
20.
A 15-nucleotide (nt) unstructured RNA with an initiation site but lacking a promoter could direct the initiation of RNA synthesis by the brome mosaic virus (BMV) replicase in vitro. However, BMV RNA with a functional initiation site but a mutated promoter could not initiate RNA synthesis either in vitro or in vivo. To explain these two observations, we hypothesize that RNA structures that cannot function as promoters could prevent RNA synthesis by the BMV RNA replicase. We documented that four different nonpromoter stem-loops can inhibit RNA synthesis from an initiation-competent RNA sequence in vitro. Destabilizing these structures increased RNA synthesis. However, RNA synthesis was restored in full only when a BMV RNA promoter element was added in cis. Competition assays to examine replicase-RNA interactions showed that the structured RNAs have a lower affinity for the replicase than do RNAs lacking stable structures or containing a promoter element. The results characterize another potential mechanism whereby the BMV replicase can specifically recognize BMV RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号