首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.  相似文献   

3.
The kinetics of mating type switching in Saccharomyces cerevisiae can be followed at the DNA level by using a galactose-inducible HO (GAL-HO) gene to initiate the event in synchronously growing cells. From the time that HO endonuclease cleaves MAT a until the detection of MAT alpha DNA took 60 min. When unbudded G1-phase cells were induced, switched to the opposite mating type in "pairs." In the presence of the DNA synthesis inhibitor hydroxyurea, HO-induced cleavage occurred but cells failed to complete switching. In these blocked cells, the HO-cut ends of MATa remained stable for at least 3 h. Upon removal of hydroxyurea, the cells completed the switch in approximately 1 h. The same kinetics of MAT switching were also seen in asynchronous cultures and when synchronously growing cells were induced at different times of the cell cycle. Thus, the only restriction that confined normal homothallic switching to the G1 phase of the cell cycle was the expression of HO endonuclease. Further evidence that galactose-induced cells can switch in the G2 phase of the cell cycle was the observation that these cells did not always switch in pairs. This suggests that two chromatids, both cleaved with HO endonuclease, can interact independently with the donors HML alpha and HMRa.  相似文献   

4.
Haploid cells of the yeast Saccharomyces cerevisiae are able to undergo a differentiation-like process: they can switch their mating type between the a and the alpha state. The molecular mechanism of this interconversion of mating types is intrachromosomal gene conversion. It has been shown in a variety of studies that mating type switching in heterothallic strains can be induced by DNA damaging agents, and that different DNA damaging agents differ in the length of incubation after treatment required for induction. Because X-rays induce switching immediately after irradiation and because the DNA double-strand break repair pathway is required for switching, the event initiating heterothallic mating type switching is likely to be a DNA double-strand break. Therefore the assay for heterothallic mating type switching may screen for the induction of DNA double-strand breaks. Several aspects indicating a relationship of mating type switching to mechanisms associated with carcinogenesis are discussed.  相似文献   

5.
We have identified two novel intermediates of homothallic switching of the yeast mating type gene, from MATa to MAT alpha. Following HO endonuclease cleavage, 5' to 3' exonucleolytic digestion is observed distal to the HO cut, creating a 3'-ended single-stranded tail. This recision is more extensive in a rad52 strain unable to switch. Surprisingly, the proximal side of the HO cut is protected from degradation; this stabilization depends on the presence of the silent copy donor sequences. A second intermediate was identified by a quantitative application of the polymerase chain reaction (PCR). The Y alpha-MAT distal covalent fragment of the switched product appears 30 min prior to the appearance of the MAT proximal Y alpha junction. No covalent joining of MAT distal to HML distal sequences is detected. We suggested that the MAT DNA distal to the HO cut invades the intact donor and is extended by DNA synthesis. This step is prevented in a rad52 strain. These intermediates are consistent with a model for MAT switching in which only the distal side of the HO cut is initially active in strand invasion and transfer of information from the donor.  相似文献   

6.
7.
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATα mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.  相似文献   

8.
Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains   总被引:29,自引:5,他引:29       下载免费PDF全文
The functional sequence from the centromere in chromosome VI ( CEN6 ) of Saccharomyces cerevisiae was narrowed down to a stretch of 500 bp by a Bal31 deletion approach. The DNA sequence in this region shows three long stretches, 40 bp, 96 bp, and 63 bp of 85% and more AT pairs and a pyrimidine purine bias in the individual single strands. We assume that the CEN6 functional sequences encompass these AT-rich stretches because this part shows striking similarities to sequence elements common to CEN3 and CEN11 DNA. A strain comparison revealed that CEN6 DNA sequences are confined to the Saccharomyces genus and probably only to the S. cerevisiae species. CEN6 is not highly conserved within S. cerevisiae strains because EcoRI and HindIII restriction site variants are found with high frequency.  相似文献   

9.
A double-stranded DNA cut has been observed in the mating type (MAT) locus of the yeast Saccharomyces cerevisiae in cultures undergoing homothallic cassette switching. Cutting is observed in exponentially growing cells of genotype HO HML alpha MAT alpha HMR alpha or HO HMLa MATa HMRa, which switch continuously, but not in a/alpha HO/HO diploid strains, in which homothallic switching is known to be shut off. Stationary phase cultures do not exhibit the cut. Although this site-specific cut occurs in a sequence (Z1) common to the silent HML and HMR cassettes and to MAT, only the Z1 sequence at the MAT locus is cut. The cut at MAT occurs in the absence of the HML and HMR donor cassettes, suggesting that cutting initiates the switching process. An assay for switching on hybrid plasmids containing mata- cassettes has been devised, and deletion mapping has shown that the cut site is required for efficient switching. Thus a double-stranded cut at the MAT locus appears to initiate cassette transposition-substitution and defines MAT as the recipient in this process.  相似文献   

10.
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.  相似文献   

11.
When a mating type cells of Saccharomyces cerevisiae are exposed to the mating pheromone alpha-factor in liquid cultures, there is a time-dependent loss of alpha-factor activity from the culture fluid. This loss of biological activity can be directly correlated with the proteolysis of the pheromone by a mating type cells. The metabolism of alpha-factor by a mating type cells may be measured by using either in vitro 125I-labeled or in vivo 35S-labeled pheromone. Addition of chloroquine to growing cultures of a mating type cells at concentrations which cause no detectable alterations in cell growth produces a potentiation of alpha-factor mediated cell cycle arrest. This potentiation of alpha-factor activity is directly correlated with the inhibition of alpha-factor proteolysis. Thus, while proteolytic digestion of alpha-factor appears to be related to the mechanism whereby a mating type cells "detoxify" alpha-factor and recover from cell cycle arrest, proteolysis of the mating factor is not necessary for alpha-factor mediated cell cycle arrest.  相似文献   

12.
The change of the mating factor activity during the culture of Saccharomyces cerevisiae X-2180 1B, an alpha-mating type haploid strain, were followed. The activity increased rapidly during the exponential phase of growth, reached a maximum during the early stationary phase and then decreased. Oligopeptides comprising partial sequences of the mating factor were isolated from the culture fluids at various phases of cell growth. We concluded that the mating factor, a tridecapeptide, was degraded during culture into two peptides, Trp-His-Trp-Leu-Gln-Leu and Lys-Pro-Gly-Gln-Pro-Met-Tyr, by cleavage of the peptide bond between Leu-6 and Lys-7 of the mating factor. A dodecapeptide lacking the N-terminal Trp residue was not detected at any stage of cell growth examined.  相似文献   

13.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.  相似文献   

14.
15.
Genetic instability and genome renewal may cause loss of heterozygosity (LOH) in homothallic wine yeasts (Saccharomyces cerevisiae), leading to the elimination of the recessive lethal or deleterious alleles that decrease yeast fitness. LOH was not detected in genetically stable wine yeasts during must fermentation. However, after sporulation, the heterozygosity of the new yeast population decreased during must fermentation. The frequency of mating between just-germinated haploid cells from different tetrads was very low, and the mating of haploid cells from the same ascus was favored because of the physical proximity. Also, mating restriction between haploid cells from the same ascus was found, leading to a very low frequency of self spore clone mating. This mating restriction slowed down the LOH process of the yeast population, maintaining the heterozygote frequency higher than would be expected assuming a fully random mating of the haploid yeasts or according to the Mortimer genome renewal proposal. The observed LOH occurs because of the linkage of the locus MAT to the chromosome III centromere, without the necessity for self spore clone mating or the high frequency of gene conversion and rapid asymmetric LOH observed in genetically unstable yeasts. This phenomenon is enough in itself to explain the high level of homozygosis found in natural populations of wine yeasts. The LOH process for centromere-linked markers would be slower than that for the nonlinked markers, because the linkage decreases the frequency of newly originated heterozygous yeasts after each round of sporulation and mating. This phenomenon is interesting in yeast evolution and may cause important sudden phenotype changes in genetically stable wine yeasts.  相似文献   

16.
Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3 and rad4 mutants.  相似文献   

17.
The ability to remove ultraviolet (UV)-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 UV-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.  相似文献   

18.
The repair of gamma-ray induced DNA single and double-strand breaks was looked at in wild type and rad18-2 strains of the yeast Saccharomyces cerevisiae using sucrose gradient centrifugation. It was found that rad18-2 diploid cells could repair single and double-strand breaks induced by gamma-rays. It was also found that rad18-2 cells experienced a breakup of their DNA during post-irradiation incubation to a size smaller than seen in cells just receiving irradiation. This breakup of DNA in rad18-2 cells is not degradation due to cell death since wild type cells irradiated to similar low survival levels do not show this breakup of DNA with 8 h incubation. The breakup of DNA in rad18-2 cells is not due to replication gaps being formed by synthesis on a damaged template since treatment of rad18-2 a mating type cells with alpha factor, to prevent initiation of DNA synthesis, does not prevent breakup of the DNA.  相似文献   

19.
The process of the entry of FITC-conjugated mating factor into a-mating type cells of Saccharomycescerevisiae and its concentration into the nucleus were observed. But, when α-mating type cells or diploid cells of S.cerevisiae were incubated with the FITC-conjugated mating factor, its adsorption to the cell surface of the test organisms and its incorporation into the cell did not occur. The peptides formed by the cleavage of mating factor by α-mating type cells of S.cerevisiae were not adsorbed onto a-mating type cells.  相似文献   

20.
Summary Disruption/deletion mutations in genes of the RAD52 epistasis group of Saccharomyces cerevisiae were examined for their effects on recombination between single-and double-stranded circular DNA substrates and chromosomal genes in a transformation assay. In rad50 mutants there was a small reduction in recombination with single-stranded DNA at the leu2-3, 112 allele; in addition there was an almost complete elimination of recombination at trpl-1 for both single- and double-stranded DNA. Reintroduction of a wild-type RAD50 gene on a replicating plasmid carrying CEN4 restored recombinational competence at trpl-1, indicating that rad50 is defective in gene replacement of this allele. In rad52 mutants a reduction of 30%-50% in recombination involving either single- or double-stranded circular DNA was observed in each experiment when compared to the wild type. This reduction of recombination in rad52 mutants was similar for recombination at the ura352 mutant locus where only integration events have been observed, and at the trpl-1 mutant locus, where recombination occurs predominantly by gene replacement. Neither the rad54 nor the rad57 mutations had a significant effect on recombination with single- or double-stranded DNA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号