首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.  相似文献   

3.
Drosophila Polycomb group proteins are thought to form multimeric nuclear complexes that are responsible for stable transmission of repressed states of gene expression during the proliferation of differentiating embryos. In this study, we cloned, sequenced, and characterized two Polycomb group homologs, designated pc1 and psc1, in zebrafish. Amino acid sequence analyses determined that pc1 is a structural homolog of Drosophila Polycomb and that psc1 is a homolog of Drosophila Posterior sex combs. Northern blots and whole-mount in situ hybridization revealed that pc1 and psc1 had overlapping expression patterns at successive stages of embryogenesis. Immunocytochemistry localized both Pc1 and Psc1 protein in blastomere nuclei. Pull-down assays and two-hybrid system deletion analyses showed that these proteins were capable of homotypic and heterotypic interactions and identified the regions required for these interactions. The evidence supports the idea that zebrafish Polycomb group proteins, like those of other species, form nuclear complexes with compositions that may vary in a spatio-temporal manner during development.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The genomic binding sites of Polycomb group (PcG) complexes have been found to cluster, forming Polycomb "bodies" or foci in mammalian or fly nuclei. These associations are thought to be driven by interactions between PcG complexes and result in enhanced repression. Here, we show that a Polycomb response element (PRE) with strong PcG binding and repressive activity cannot mediate trans interactions. In the case of the two best-studied interacting PcG targets in Drosophila, the Mcp and the Fab-7 regulatory elements, we find that these associations are not dependent on or caused by the Polycomb response elements they contain. Using functional assays and physical colocalization by in vivo fluorescence imaging or chromosome conformation capture (3C) methods, we show that the interactions between remote copies of Mcp or Fab-7 elements are dependent on the insulator activities present in these elements and not on their PREs. We conclude that insulator binding proteins rather than PcG complexes are likely to be the major determinants of the long-range higher-order organization of PcG targets in the nucleus.  相似文献   

11.
12.
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri‐methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3‐enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as “bivalency”. While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage‐specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP‐dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable “bivalent specificity”, often selectively acting on, or selectively depleted from, bivalent domains.  相似文献   

13.
Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1–MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.  相似文献   

14.
Two main classes of proteins, Polycomb group (PcG) and Trithorax group (TrxG), play a key role in the regulation of homeotic genes. These proteins act in multimeric complexes to remodel chromatin. A third class of proteins named Enhancers of Trithorax and Polycomb (ETP) modulates the activity of TrxG and PcG, but their role remains largely unknown. We previously identified an HMGB‐like protein, DSP1 (Dorsal Switch Protein 1), which was classified as an ETP. Preliminary studies have revealed that DSP1 is involved in multimeric complexes. Here we identify a DEAD‐box RNA helicase, Rm62, as partner of DSP1 in a 250‐kDa complex. Coimmunoprecipitation assays performed on embryo extracts indicate that DSP1 and Rm62 are associated in 3‐ to 12‐h embryos. Furthermore, DSP1 and Rm62 colocalize on polytene chromosomes. Consistent with these results, a mutation in Rm62 enhances a null mutation of dsp1 and also mutations of trxG or PcG, suggesting that Rm62 has characteristics of an ETP. We show here for the first time that an RNA helicase is involved in the maintenance of homeotic genes. genesis 48:244–253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Polycomb response elements (PREs) are regulatory sites that mediate the silencing of homeotic and other genes. The bxd PRE region from the Drosophila Ultrabithorax gene can be subdivided into subfragments of 100 to 200 bp that retain different degrees of PRE activity in vivo. In vitro, embryonic nuclear extracts form complexes containing Polycomb group (PcG) proteins with these fragments. PcG binding to some fragments is dependent on consensus sequences for the GAGA factor. Other fragments lack GAGA binding sites but can still bind PcG complexes in vitro. We show that the GAGA factor is a component of at least some types of PcG complexes and may participate in the assembly of PcG complexes at PREs.  相似文献   

16.
Proteins encoded by genes of the Polycomb (PcG), trithorax (trxG), and the Enhancer of trithorax and Polycomb (ETP) groups are important regulators of expression of most developmental genes. Data concerning all currently described genes assigned to these groups are summarized in the review. Genetic interactions of these genes and phenotypic manifestation of their mutations are described. Data on the PcG, trxG, and ETP proteins are systematized. Questions are considered concerning the formation of multimeric complexes containing proteins of these groups, recruitment of these complexes to regulatory elements of target genes, and the mechanisms of activation/repression of gene expression.  相似文献   

17.
The Polycomb Response Element (PRE) is the nucleation site for the Polycomb silencing complexes. The sequences responsible for the recruitment of the components of the Polycomb complex are not well understood. A comparison of the bxd PRE sequences from several different Drosophila species shows that some changes have occurred during phylogeny but large blocks of sequence are conserved after a divergence of some 60 million years. We compare the PRE sequences, the sites of some known PRE binding proteins, the conservation of DNasel hypersensitive sites and relate them to the sequence of the Ultrabithorax promoter which these PREs regulate.  相似文献   

18.
19.
20.
PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号