首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood ash was applied to a forest ecosystem with the aim to recycle nutrients taken from the forest and to mitigate the negative effects of intensive harvesting. After two years, the application of 8,000 kg ha−1 of wood ash increased soil exchangeable Ca and Mg. Similarly, an increase in Ca and Mg in the Norway spruce fine roots was recorded, leading to significant linear correlations between soil and root Ca and soil and root Mg. In contrast to these macronutrients, the micronutrients Fe and Zn and the toxic element Al decreased in the soil exchangeable fraction with the addition of wood ash, but not in the fine roots. Only Mn decreased in soil and in fine roots leading to a significant linear correlation between soil and root Mn. In soil, as well as in fine roots, strong positive correlations were found between the elements Ca and Mg and between Fe and Al. This indicates that the uptake of Mg resembles that of Ca and that of Al that of Fe. With the wood ash application, the pH increased from 3.2 to 4.8, the base saturation from 30% to 86%, the molar basic cations/Al ratio (BC/Al) of the soil solution from 1.5 to 5.5, and the molar Ca/Al ratio of the fine roots from 1.3 to 3.7. Overall, all below-ground indicators of soil acidification responded positively to the wood ash application within two years. Nitrate concentrations increased only slightly in the soil solution at a soil depth of 75–80 cm, and no signs of increased heavy metal concentrations in the soils or in the fine roots were apparent. This suggests that the recycling of wood ash could be an integral part of sustainable forest management because it closes the nutrient cycle and reverses soil acidification.  相似文献   

2.
The objectives of the present work were (a) to quantify the effects of wood ash on forest ecosystems through a meta-analysis approach associated with a detailed review of the literature (mainly composed of work carried out in Nordic countries) and (b) to extrapolate the effects on forest growth to other contexts (i.e. warm temperate countries) by identifying the cases for which wood ash applications can be beneficial to forest production. Three databases were built regarding the effects of wood ash on soil (151 observations; 33 experimental field trials), on nutrient concentrations of tree foliage (68 observations; 28 trials) and on annual stem biomass growth rate (70 observations; 27 trials). We obtained information on the wide variability of ash properties due to differences in burnt compounds, combustion processes and ash conditioning. Two important properties of wood ash are its high pH value and neutralizing capacity. These properties result in biochemical modifications of forest soils limed with ash. In the short term, soil solution composition was dramatically modified. Intense peaks of the K, Na or SO4 concentrations were observed, resulting from the dissolution of salts contained in ash. At the same time, Ca and Mg concentrations increased as the carbonate pool of wood ash started to dissolve. The consequence of this dissolution process was an increase in the pH in all the soil phases. These modifications increased the activity of the soil microflora and some isolated peaks in the mineralization of soil organic matter may be observed in mineral soils. In the longer term, that is to say after the first year following ash application, only the effect on the acidity status of the soil remained significant. The effects of ash addition on forest ecosystems usually increased with the dose and were more pronounced with loose ash compared to aggregated ash. The addition of wood ash into forest ecosystems increased the foliar Ca status of trees. Some modifications of other nutrients, like P or K, were also observed but only for a few years after treatment. For most stands growing on mineral soils of Nordic countries, this treatment did not result in an increase in tree growth, probably because of the absence of N in the ash. For stands growing on organic soils of the same area, this input, associated with a long-lasting increase of soil organic matter mineralization, was sufficient to improve tree growth significantly (median = +59% compared to the control). For soils located in warm temperate regions, similar responses are expected for organic soils. For mineral soils, the wood ash application is expected to be suitable for stands showing deficiencies in K, Ca or Mg. Ash may contain high amounts of toxic heavy metals such as Cd. The bioavailability of most of these elements appeared to be very low in a forest context. No contamination of food chains has been observed, except possibly via some species of fungi, and heavy metals remain in the forest litter or in the topsoil. Based on all the reviewed results, several guidelines for wood ash application into forest ecosystems are proposed. Wood ash application should be restricted to acidic soils. Applications should consist of low doses of a stabilized ash form. Wood ash should be applied to adult stands rather than onto seedlings.  相似文献   

3.
Summary The influence of liming on soil solution composition was compared in two laboratory amended soils and one field amended soil. In the laboratory study, soil solutions were sampled by miscible displacement at intervals of 1 and 10 weeks after liming. In addition to increases in pH and Ca, there were large reductions in the concentrations of Mg, K, Na, Si and Mn. Solution concentration of free Al decreased with liming; however, organically complexed Al increased, as did soluble organic matter. Liming also stimulated mineralization of N as indicated by increased solution NO3 levels. The field amended soils were obtained from a long-term cutting trial investigating the effects of lime on pasture. Despite the passage of a 16-year interval since application, the effects of lime on soil solution characteristics were still clearly evident and generally consistent with those observed in the laboratory study. Estimated leaching losses of Ca from limed soil were relatively low, amounting to 12%, 27% and 44% of the 4.2, 8.4 and 12.5 t lime ha−1 applied, respectively. The results suggest that, in Eastern Ireland, a lime treatment would maintain and elevated pH and would influence the avialability and mobility of plant nutrients for some decades following application.  相似文献   

4.
There are about 130,000 hectares of land in South Africa that have been under black wattle plantation for a long time and whose soils have become more acidic than those from contiguous land without the tree. This incubation study investigated the effectiveness of lime, chicken manure and leaf litter ash to ameliorate the soil acidity. Lime and chicken manure were applied in pots at rates equivalent to 0, 5, 10 and 20 Mg ha(-1) while ash was applied at 0, 3 and 5 Mg ha(-1). In comparison to the control, the application of all the three amendments caused significant increases in soil pH(KCL) (4.1-5.6) and reduced the exchangeable acidity. The liming effectiveness of the amendments varied with rate and type of amendment and were in the order: lime > chicken manure > ash. A similar trend was evident in the concentration of exchangeable bases (Ca, Mg and K) in the soil. The effectiveness of ash and chicken manure as liming material was 0.12 and 0.26 respectively compared to lime. The difference in liming effect between ash and chicken manure was related to their alkalinity concentration. It was concluded that both amendments have the potential to be used as liming materials and merit further field evaluation.  相似文献   

5.
R. A. Carran 《Plant and Soil》1991,134(1):107-114
Three pot experiments, in which causes of negative yield responses to liming were investigated, are reported. The soil used, Waimumu silt loam (Fragiochrept), differed from others that have been reported to show negative yield response to liming, in that it is only moderately weathered and leached, only moderately acid and has previously shown positive yield responses to liming. Deficiencies of Zn and Mg were identified, but limed (pH 6.8) soils still showed a 40% yield depression even where all nutrients were supplied daily. Phosphorus availability was little affected by liming, and despite Mg and Zn addition, yields were depressed at high lime (pH 6.4) and high P while plants showed leaf symptoms of Mg deficiency. Neither plant nor soil analyses indicated low Mg levels but Ca: Mg ratios in soil were 22:1. When a pH range 5.2–6.1 was produced by liming with CaCO3 and MgCO3 at ratios between 100:0, and 50:50 on an equivalent basis, negative yield response was eliminated at Ca:Mg of 50:50. There was no evidence that Mg was fixed or rendered unavailable at the higher pH levels. A Ca induced Mg deficiency arising when exchangeable Ca:Mg>20 is suggested as the cause. The role of variable surface charge in converting soils that respond positively to lime to a negative response condition is discussed.  相似文献   

6.
A laboratory aerobic incubation study was performed during 18 weeks under controlled conditions to assess the effects of applying different doses of pulp mill inorganic wastes on the physical-chemical properties of an acid Dystric Cambissol. Three different inorganic wastes were tested - wood ash, dregs and grits, and an agriculture limestone was used as reference. Results showed that increasing the dose applied of the different inorganic wastes tested always led to significant raises of soil pH at different incubation times demonstrating that its use as alternative-liming materials could be a valid and less expensive option to the use of commercial agricultural limestone. Moreover, no immediate concerns seem to be expected related to soil exchangeable sodium (Na) content, at least for the doses needed to increase soil pH until the targeted value 6.5. Particularly for wood ash a pronounced increase on soil extractable potassium and phosphorous was observed, indicating that besides the liming effect this waste can contribute to improve soil fertility by supplying significant available amounts of these nutrients. Finally, metals do not seem to be a limiting factor for the application to land of these by-products.  相似文献   

7.
The influences of thinning (50% of standing density) and liming (Ca+Mg, 2 Mg ha−1) on soil chemical properties were investigated for 2 years (2001, 2002) in 40-year-old pitch pine (Pinus rigida Mill.) and 44-year-old Japanese larch (Larix leptolepis Gord.) plantations established on similar soils. In general, soil properties varied significantly among plantations and treatments. For both plantations, thinning significantly increased soil organic C (SOC) concentrations whereas there were no significant changes in soil pH and Ca and Mg concentrations. In addition, thinning increased total soil N and Na concentrations for the pitch pine plantation and available P concentration for the Japanese larch plantation in the second year after the treatment. Liming did not affect soil chemical characteristics for the pitch pine plantation except for Na concentration. However, for the Japanese larch plantation, liming significantly increased soil pH and K, Ca and Mg concentrations and decreased SOC and total soil N concentrations. For both plantations, soil Al concentration did not change after thinning and liming and decreased exponentially with increased pH values. The increases in SOC and total soil N concentrations after thinning were possibly due to increases in decomposition of organic matter and root death. Although differences were not statistically significant, soil available P concentration tended to increase at early stages of liming for both plantations. These results suggested that thinning and liming seemed to regulate soil chemical properties for pitch pine and Japanese larch plantations established on similar soils.  相似文献   

8.
The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost of buying synthetic inorganic fertilizers and maintain the long term productivity of soils for sustainable cultivation of okra.  相似文献   

9.
Ash from combustion of biofuels, for example wood chips, is often deposited as waste, but due to its high content of essential plant nutrients and alkalinity, it has been proposed to recycle ash as a fertilizer and liming agent in biofuel production forest. However, current legislation sets rather strict limitations for wood‐ash application in biofuel production systems. The soil microfood web, that is microorganisms and their microfaunal grazers, protozoa and nematodes, is pivotal for essential ecosystem processes such as decomposition and plant nutrient release. Therefore, a thorough assessment of the impacts on microfood web structure and functioning must precede actions towards raising the currently allowed application rates. In a Danish Norway spruce plantation, we evaluate the impact of wood ash applied at dosages from 0 to the extreme case of 90 t ash ha?1 on the microfood web, the bacterial community structure, soil content of inorganic nitrogen, organic matter, dissolved organic carbon and nitrogen. Using structural equation modelling (SEM), we disentangled the direct effect of the disturbance imposed by ash per se, the associated pH increase and changes in prey abundance on individual organism groups in the microfood web. The SEM showed that the pH rise was the main driver of increasing abundances of culturable heterotrophic bacteria with increasing ash doses, and via trophical transfer, this also manifested as higher abundances of bacterial grazers. Fungal‐feeding nematodes were unaffected by ash, whereas carnivorous/omnivorous nematodes decreased due to the direct effect of ash. Increasing ash doses enhanced the difference between bacterial communities of control plots and ash‐amended plots. The ash‐induced stimulation of culturable heterotrophic bacteria and bacterial grazers increased inorganic nitrogen availability at ash doses of 9 t ha?1 and above. Hence, raised limits for ash application may potentially benefit tree growth via enhanced N mineralization activity of the soil food web.  相似文献   

10.
Arvidsson  Helen  Lundkvist  Heléne 《Plant and Soil》2002,238(1):159-174
Nutrient concentrations in current and 1-year-old needles were analyzed annually for 5 years after application of hardened wood ash in 1–4-year-old Norway spruce (Picea abies (L.) Karst.) stands within a range of climate and fertility gradients. At each site, 3000 kg ha–1 hardened wood ash of two types, Nymölla and Perstorp, was applied in a randomized block design. Wood ash Nymölla contained 12 kg ha–1 P, 30 kg ha–1 K, 891 kg ha–1 Ca, 72 kg ha–1 Mg and wood ash Perstorp contained 12 kg ha–1 P, 60 kg ha–1 K, 486 kg ha–1 Ca, and 60 kg ha–1 Mg. The ash was intended to compensate for nutrients removed at the preceding harvest when logging residues were collected and removed from the site (whole-tree harvesting). The climate gradient included four climate zones throughout Sweden and each of these included a fertility gradient of three sites classified according to their ground vegetation type. There were no effects on nutrient concentrations in the needles 1 year after the application of wood ash. Five years after ash application, the concentrations of P, K and Ca in current and 1-year-old needles were higher than in the control plots. The results were consistent over all stands, irrespective of climate zone and fertility status. P and K concentrations were higher in spruce needles from plots treated with Perstorp wood ash, whereas Ca concentrations were higher in those of Nymölla treated plots. Analyses across all study sites revealed a treatment effect in terms of increased ratios of P:N, K:N and Ca:N in 1-year-old needles. The ratio P:N tended to increase with time in the Perstorp wood ash treatment compared with the control. The needle concentrations of Mg and S were not affected by the ash applications. The increase in needle nutrient concentrations after application of hardened wood ash suggests that wood ash recycling could be used in order to replace nutrients removed at whole-tree harvesting.  相似文献   

11.
Amendment of forest soils with mixed wood ash (MWA) generated in biomass power plants can prevent the depletion of soil nutrients that results from the intensive harvesting of forest plantations. Unlike fly wood ash, MWA contains charcoal and is characterized by a lower release of nutrients, so that it might be useful as a long term source of nutrients and soil organic matter. However, in order to use MWA as a fertilizer in forest systems, its effectiveness as regards supplying P and N must be improved. These aspects were studied in a 4 year-trial carried out in a Pinus radiata plantation. MWA was added alone or with mineral P, and the results were compared with those obtained with a combination of Ca(OH)2 and mineral P. The application of MWA together with mineral P fertilizer increased the nutrient supply to the trees, as revealed by the changes in nutrient concentrations, lower values of resorption efficiencies and improved tree growth. The results showed that the amounts of Ca, Mg and K supplied by the MWA were suitable for maintenance of soil reserves. However, the presence of charcoal may have decreased the availability of P. The application of the MWA led to lower soil N mineralization rates and mineral N concentrations, which may affect N-limited systems. The use of density-dependent single tree increment models enabled the positive effects on tree growth of fertilization and thinning to be distinguished. For the treatments supplemented with mineral P, multiplicative factors of 1.13 to 1.15 can be applied to obtain post-thinning predictions of 4-year single-tree basal area increments. Although MWA can be used as a long term source of nutrients, charcoal temporarily reduces the availability of P and N.  相似文献   

12.
Summary The distribution and storage of major elements in acid soils from a spruce and a beech forest was investigated after fertilization of NH4NO3 and KCl followed by Ca and Mg fertilization by 2 liming applications. All fertilizers were applied on top of the soil without mixing. Most of the added Ca and Mg was detected in the humus layer, a significant part of it still in carbonatic form. The effect of liming on mineral soil pH is very low, and was only observed in the 0–10 cm layer. However, base saturation of the mineral soil increased. The storage of C and N of the humus layer was not affected. N fertilization increased the N storage of the soil only under beech, but was followed by heavy NO3-losses with seepage water under spruce. High leaching rates for K were also found in the spruce stand. The amount of K that was not leached increased the pool of exchangeable K in the deeper soil layer.  相似文献   

13.
Soil born fungi such as Phytium ultimum, Fusarium ssp., and Rhizoctonia solani (Kühn) severely restrict stand establishment of common bean (Phaseolus vulgaris L.) on acid soils of the Tropics. Calcium application is known to alleviate fungal infection in many legumes but the causes are still unclear. To investigate environmental factors and physiological mechanisms involved, growth chamber experiments were conducted with an acid sandy soil from Mexico. Treatments were soil liming at a rate of 0.67 g Ca(OH)2 kg-1, gypsum application at 0.49 g CaSO4 2H2O kg-1 soil placed around the seed, and an untreated control. Beans were grown under three temperature regimes with constant night and one constant day vs. two sinusoidal day temperatures. To examine patterns of seed and seedling exudation at regular intervals leachates of germinating seeds were collected on filter paper soaked with equilibrium solutions from soils of the three treatments. The severity of root rot in the control treatment was highest when plants were stressed by temperature extremes. At a sinusoidal day temperature peaking at 40°C soil liming and gypsum application to the seed increased the number of healthy seedlings similarly by over 60%. However, only liming which effectively eliminated growth constraints by low pH and high aluminum concentrations led to an increase in hypocotyl elongation by 22% and in total root length by 8%. Both calcium amendments increased the calcium and potassium contents in the hypocotyl tissue. From seeds exposed to the equilibrium solution of unlimed soil with pH 3.7, 1 mM Ca, and 0.6 mM Al considerable amounts of amino acids and carbohydrates were leached. In contrast, exposure to the equilibrium solution from limed soil with pH 4.3, 3 mM Ca, and negligible concentrations of Al led to a net uptake of amino acids and decreased leaching of carbohydrates. Exposure to the equilibrium solution of the gypsum treatment with pH 3.6, 20 mM Ca, and 1.2 mM Al resulted in a somewhat smaller net uptake of amino acids compared to liming. During germination pH around the seeds steeply increased in the untreated control but significantly less with both amendments. The results indicate that pH and the Ca/Al ratio in the soil solution around bean seeds determine their pattern of exudation and solute uptake. For bean germination and early growth on acid soils locally placed application of small amounts of gypsum as seed pelleting seems as effective as soil liming in reducing the incidence of root rot. The results indicate that this may be accomplished by decreasing the amount of leachates available for fungal development.  相似文献   

14.
This study was conducted under greenhouse conditions to evaluate the potential use of SPS as a fertilizer, amendment and/or liming agent for wheat (Triticum aestivum L.). Two representative Mediterranean agricultural soils, a Cambic Arenosol (cmAR) and a Cromic Cambisol (crCM) were used. Treatments included four sludge rates ranging from 0 to 40 g kg(-1) (equivalent of 0, 38, 88 and 120 Mg ha(-1)). A significant increment in soil pH, organic carbon, N total, available P and exchangeable K were observed in both soils. Sludge application significantly increased N and decreased Zn, Mn and Cu concentrations in wheat. Wheat grain yields were reduced by 33% and 37% when 120 Mg SPS ha(-1) was applied to cmAR and crCM soils, respectively, due apparently to unavailability of Mg. However, straw yields, with much lower Mg requirements, increased significantly with SPS rates. Secondary pulp mill sludge seems to be a potential source of organic matter, N, P, K and a potential soil amendment liming agent for acid soils, when appropriate supplemental fertilizer was provided. For grain crops grown in these soils, addition of Mg is required for proper nutrient balance.  相似文献   

15.
Wood ash amendment to forest soils contributes to the sustainability of the growing bioenergy industry, not only through decreased wood ash waste disposal in landfills but also by increasing soil/site productivity and tree growth. However, tree growth studies to date have reported variable responses to wood ash, highlighting the need to identify proper application rates under various soil/site conditions to maximize their benefits. We explored the influence of tree species, wood ash nutrient application rates, time since application, stand development stage, and initial (i.e., before wood ash application) soil pH and N on short‐term tree growth response to wood ash amendment across eight unique study sites spanning five Canadian Provinces. Jack pine (Pinus banksiana Lamb) had the most positive response to wood ash amendment compared to white (Picea glauca Moench), hybrid (Picea engelmannii x glauca Parry), and black spruce (Picea mariana Miller), where increasing nutrient application rates increased height growth response. In comparison, black spruce had the most negative response to wood ash amendment, where increasing nutrient application rates slightly decreased height growth response. Site as a random effect explained additional variation, highlighting the importance of other unidentified site characteristics. By examining trends in short‐term growth response across multiple studies with variable site characteristics, we found growth response differed by tree species and nutrient application rates, and that jack pine is a promising candidate for wood ash amendment. These results contribute to our knowledge of optimal wood ash amendment practices and environmentally sustainable bioenergy production.  相似文献   

16.
Lee H  Ha HS  Lee CH  Lee YB  Kim PJ 《Bioresource technology》2006,97(13):1490-1497
Paddy soils in Korea generally require the addition of Si to enhance rice productivity. Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of Si in this study. Two field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam and loamy sand soils to which 0, 40, 80, and 120 Mg ha(-1) of fly ash were added with 2 Mg ha(-1) Si as a control. Fly ash increased the soil pH and available Si and P contents of both soils. The amount of available B increased to a maximum of 2.57 mg kg(-1), and the B content of the rice plants increased to a maximum of 52-53 mg kg(-1) following the addition of 120 Mg ha(-1) fly ash. The rice plants did not show toxicity effects. The highest rice yields were achieved following the addition of around 90 Mg ha(-1) fly ash. The application of fly ash increased Si, P and K uptake by the rice plants, but did not result in an excessive uptake of heavy metals in the submerged paddy soil. In conclusion, fly ash could be a good supplement to other inorganic soil amendments to improve the nutrient balance in paddy soils.  相似文献   

17.
Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment.  相似文献   

18.
We determined the effects of wood ash fertilization, given together with nitrogen (WAN), and nitrogen given together with P, B and Cu (SSF), on soil and foliage nutrients and fine root biomass in a 45-year-old Norway spruce stand in southern Finland. Fine roots were sampled 9 years, and the soil 10 years after ash (3 t/ha) and nitrogen (150 kg/ha) application. Fine root biomass tended to be lower, the necromass higher, and the fine root distribution relatively deeper on the WAN than on the control and SSF plots. The response of fine root biomass to WAN was probably related to changes in soil acidity. pH, base saturation, total and extractable concentrations of Ca, K, Mg and P, and total B, Cd, Mn, Ni and Zn concentrations in the organic layer were significantly higher on the WAN plots than on the SSF and the control plots with no ash and nutrient addition. On the WAN plots, the pH was 1.2 pH-units higher, the exchangeable Ca concentrations fourfold and those of Mg over twofold compared to the control plots. WAN increased the concentrations of K but decreased those of Mn and Ni in the needles compared to the control and SSF treatment. Even though ash and nitrogen fertilisation tended to decrease the fine root biomass, this decrease was not likely to affect tree growth during a 10-year period.  相似文献   

19.
Bakker  M.R.  Kerisit  R.  Verbist  K.  Nys  C. 《Plant and Soil》1999,217(1-2):243-255
Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L > G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L > G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L > G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L > G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Low soybean yields in western Kenya have been attributed to low soil fertility despite much work done on nitrogen (N) and phosphorus (P) nutrition leading to suspicion of other nutrient limitations. To investigate this, a nutrient omission trial was set up in the greenhouse at the University of Eldoret-Kenya to diagnose the nutrients limiting soybean production in Acrisols from Masaba central and Butere sub-Counties, and Ferralsols from Kakamega (Shikhulu and Khwisero sub-locations) and Butula sub-Counties and to assess the effect of liming on soil pH and soybean growth. The experiment was laid out in a completely randomized design with ten treatments viz; positive control (complete), negative control (distilled water), complete with lime, complete with N, minus macronutrients P, potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and with, micro-nutrients boron (B), molybdenum (Mo), manganese (Mn), copper (Cu) and zinc (Zn) omitted. Visual deficiency symptoms observed included interveinal leaf yellowing in Mg omission and N addition and dark green leaves in P omission. Nutrients omission resulted in their significantly low concentration in plant tissues than the complete treatment. Significantly (P≤ 0.05) lower shoot dry weights (SDWs) than the complete treatment were obtained in different treatments; omission of K and Mg in Masaba and Shikhulu, Mg in Khwisero, K in Butere and, P, Mg and K in Butula. Nitrogen significantly improved SDWs in soils from Kakamega and Butula. Liming significantly raised soil pH by 9, 13 and 11% from 4.65, 4.91 and 4.99 in soils from Masaba, Butere and Butula respectively and soybean SDWs in soils from Butere. The results show that, poor soybean growth was due to K, Mg and P limitation and low pH in some soils. The results also signify necessity of application of small quantities of N for initial soybean use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号