首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of protein synthesis by ethionine reported previously was found to be apparent, and ethionine inhibited only amino acid uptake like other usual amino acids. Even under such strong inhibition of the uptake, the syntheses of protein and DNA remained almost undiminished. The uptake of amino acid mixture by sea urchin embryos in the early cleavage stage was found to be carried out by active transport, since it was temperature-sensitive and was inhibited by 2,4-dinitrophenol. The uptake of an amino acid mixture or of single amino acids, e.g., valine, leucine and phenylalanine, was inhibited nonspecifically by an excess amount of other single amino acids added exogenously. Reflecting the inhibition of amino acid uptake, in vivo incorporation of amino acids into the protein fraction was apparently inhibited by excess amounts of other amino acids. As far as tested, the inhibition seems to be nonspecific and competitive for all amino acid species. The uptakes of leucine and phenylalanine were inhibited mutually by competition, with almost the same Km and Ki.  相似文献   

2.
Incorporation of tritiated amino acids and uridine was studied in untreated and actinomycin D treated HeLa cells by high resolution autoradiography. Results showed a non-selective inhibition of protein synthesis by actinomycin, as measured by the decrease in radioactive amino acid uptake. When cells pretreated with actinomycin D were incubated with radioactive amino acids and uridine, amino acid uptake in the nucleolus still occurred, while uridine uptake was almost completely eliminated. These findings suggest that in the absence of ribosomal RNA precursor synthesis, nucleolar protein synthesis continues to some extent, and that this protein is transported to the nucleolus.  相似文献   

3.
D L Doolan  L C Ward 《Cytobios》1987,51(204):7-23
The uptake and intracellular accumulation of an amino acid mixture by incubated Ehrlich ascites tumour cells was studied. The composition of the amino acid mixture simulated that of mouse intraperitoneal fluid and amino acid uptake was studied over a range of concentrations between 0.0 (no added amino acids) and 10.0-times intraperitoneal concentrations. For most amino acids uptake into cells and intracellular accumulation occurred as concentrations were increased up to 6.0-times the intraperitoneal concentrations; further increases in external amino acid concentrations did not increase concomitantly with intracellular concentrations. These data, when analysed indicated a net protein synthetic rate of 20% d-1 and that the rate of protein synthesis may be limited by the availability of the amino acids lysine, threonine and methionine.  相似文献   

4.
Previous studies have shown that rainbow trout fed on diets containing whole protein have superior growth rates compared to fish fed on diets of similar amino acid composition but containing a high proportion of free amino acids. The influence of several nutritional factors on the uptake of radioactivity from food pellets containing either [U-I4C] protein or [U-14C] amino acids into the systemic blood of trout has been investigated. The time taken for radioactivity in the free amino acid fraction of blood to reach a peak after a meal containing [U-14C] protein had been given was much shorter, and the level of radioactivity in the blood higher, in trout with almost empty stomachs than in fish with almost full stomachs; uptake of radioactivity into blood amino acids was also more rapid and reached much higher concentrations when pellets containing [U-14C] amino acids were fed than when [U-14C] protein was fed. Incorporation of radioactivity into blood protein continued for a much longer period and reached higher levels when a pellet containing [U-14C] protein was fed than when a pellet containing [U-14C] amino acids was fed. Previous dietary history (low or high protein intake) did not appear to affect the rate of absorption of amino acids from either protein or free amino acid pellets. The uptake rates from pellets containing free amino acids could be slowed by mixing the dietary amino acids with albumin. The distribution, postabsorption, of radioactivity in the different fractions of blood and liver suggested that incorporation of carbon residues into glycogen and lipid from an amino acid diet was greater than from a protein diet. The converse was true of incorporation of radioactivity into tissue protein.  相似文献   

5.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

6.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

7.
1. Arteriovenous differences of plasma free amino acids across the lactating mammary glands of six goats have been measured. 2. In four experiments, measurements of blood flow, amino acid arteriovenous differences, milk yield and milk nitrogen showed that the uptake of nitrogen in the form of amino acids was sufficient to provide all the nitrogen of the milk proteins synthesized in the mammary gland. 3. In the same four experiments the uptake from the plasma and output into the milk of individual amino acids per unit time were compared. The uptakes of essential amino acids and glutamic acid were approximately equal to the corresponding output figures. The uptake of serine was consistently less than the output, and the uptake of other non-essential amino acids was very variable, in some experiments being approximately equal to the output figures and in others being considerably less. 4. As in cows, there was an uptake of ornithine in all experiments, though ornithine is absent from milk. In goats, though not in cows, the uptake of arginine was consistently greatly in excess of the requirement for arginine residues in milk protein. 5. The possible significance of the uptakes of arginine and ornithine for the synthesis of serine and other non-essential amino acids in the mammary gland is discussed. 6. The importance of clamping the external pudic vein, when sampling mammary venous blood from the caudal superficial epigastric vein, is indicated.  相似文献   

8.
Bacteroides amylophilus H-18 demonstrated a higher growth yield, a slightly higher growth rate, and a diminished lag period when Tryptose was added to the basal medium. This uptake of labeled amino acids was concentration-dependent, as the contribution of exogenous amino acid to the cell protein increased from 15.4 to 24.1% when the concentration of Casamino Acids in the medium was increased from 1.4 to 2.8 mg/ml. There was considerable redistribution of (14)C-label to other amino acids. Tryptic peptides of casein competed effectively with the amino acids for uptake. The (14)C-label from a protein was incorporated into B. amylophilus H-18 cells presumably after breakdown of the protein by the B. amylophilus H-18 protease.  相似文献   

9.
The regulation of the uptake of the amino acid analog α-aminoisobutyric acid was studied in diced mammary glands from pregnant mice. Stimulation of uptake by insulin was not prevented by inhibitors of protein synthesis; protein synthesis inhibitors decreased uptake by 20%; this response occurred more promptly in insulintreated tissues. Elimination of extracellular amino acids led to a substantial increase in transport which was not abolished by inhibitors of protein synthesis. These results indicate that insulin does not increase amino acid transport in this system by altering synthesis and degradation of transport protein. They are consistent with a model in which the activity of the existing amino acid transport protein is subject to negative feedback regulation from the intracellular amino acid pool.  相似文献   

10.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

11.
Metabolic activities in relation to protein synthesis and amino acid utilization are altered in Vibrio El Tor after development of resistance towards streptomycin. Efficiency of in vivo and in vitro protein synthesis is markedly reduced in streptomycin resistant Vibrio El Tor. The rate of incorporation of 14C-amino acids into protein, uptake of 14C-valine and oxidation of certain amino acids are also altered.  相似文献   

12.
Summary The net total uptake of four amino acids (valine, leucine, lysine and methionine) used at concentrations required for growth, and of thymidine at tracer concentrations, has been studied during the first cell cycle of an asparagine-dependent strain of transformed BHK cells synchronized by asparagine starvation. The rate of the total uptake of the amino acids, the free pool of the amino acids taken up, and the rate of their incorporation into protein at the cell cycle. The increase in these parameters during the cell cycle was not linear. The uptake of thymidine started before the onset of DNA synthesis and proceeded linearly beyond the peak of the S phase. The rate of accumulation of thymidine into the acid-soluble fraction also increased during the S phase, apart from a tendency to plateau off at the peak of this phase. It reached a second plateau towards the end of the cell cycle, and then declined slightly. Evidence is presented which suggests that the total quantity of protein synthesized during the cell cycle is more than the newly synthesized protein present in the cells at the end of the cell cycle; this indicates degradation and/or secretion of a substantial proportion of the newly synthesized protein. The total protein synthesized at different time points in the cell cycle appeared to contain different proportions of the amino acids used.  相似文献   

13.
We isolated two cDNAs from the mosquito Aedes aegypti, an L-amino acid transporter (AeaLAT) and a CD98 heavy chain (AeaCD98hc). Expression of AeaCD98hc or AeaLAT alone in Xenopus oocyte did not induce amino acid transport activity. However, co-expression of AeaCD98hc and AeaLAT, which are postulated to form a heterodimer protein linked through a disulfide bond, showed significant increase in amino acid transport activity. This heterodimeric protein showed uptake specificity for large neutral and basic amino acids. Small acidic neutral amino acids were poor substrates for this transporter. Neutral amino acid (leucine) uptake activity was partially Na+ dependent, because leucine uptake was approximately 44% lower in the absence of Na+ than in its presence. However, basic amino acid (lysine) uptake activity was completely Na+ independent at pH of 7.4. Extracellular amino acid concentration could be the main factor that determined amino acid transport. These results suggest the heteromeric protein is likely a uniporter mediating diffusion of amino acids in the absence of ions. The AeaLAT showed high level expression in the gastric caeca, Malpighian tubules and hindgut of larvae. In caeca and hindgut expression was in the apical cell membrane. However, in Malpighian tubules and in midgut, the latter showing low level expression, the transporter was detected in the basolateral membrane. This expression profile supports the conclusion that this AeaLAT is a nutrient amino acid transporter.  相似文献   

14.
Scutella from ungerminated grains of barley (Hordeum vulgare L. cv Pirkka) take up leucine at a slow rate, which increases rapidly during germination. When endosperms were removed from the grains after imbibition for 4 hours or after germination for 12 or 72 hours, the increase in the rate of leucine uptake was greatly accelerated during subsequent incubation of the embryos or scutella. These increases were rapidly inhibited by cordycepin and cycloheximide, suggesting that protein synthesis, probably synthesis of the carrier protein, was required for the development of the uptake activity.

In separated embryos or scutella, the increases in the leucine uptake activity were inhibited by glutamine. The inhibitions caused by glutamine and cycloheximide were not additive, suggesting that glutamine did not interfere with the function of the carrier but repressed its synthesis. Glutamine did not inhibit the simultaneous increase in peptide uptake; in this respect, its effect was specific for leucine uptake, which appears to be due to a general amino acid uptake system.

Some other protein amino acids also inhibited the increase in leucine uptake without inhibiting the increase in peptide uptake. However, these effects were smaller than that of glutamine.

These results suggest that the transfer of leucine (and other amino acids) from the endosperm to the seedling in a germinating barley grain is regulated at the uptake step by repression of the synthesis of the amino acid carrier protein by glutamine and—possibly to a lesser extent—by some other amino acids taken up from the endosperm.

  相似文献   

15.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

16.
The non-protein amino acids, -alanine and -aminobutyric acid, frequently dominate the amino acid composition of deep-sea sediments. This accumulation is most likely due to the slower decomposition of non-protein amino acids by microorganisms or to the preferential adsorption of non-protein amino acids by clay minerals. We investigated relative rates of heterotrophic uptake of alanine, -ala, and -aba in sea water to see if there were different rates of microbial assimilation and respiration between these protein and non-protein amino acids. Heterotrophic uptake was rapid for all three amino acids with turnover times of hours in productive coastal waters and days in more oligotrophic open-ocean waters. Uptake of the non-protein amino acids was significantly slower than uptake of alanine, particularly in anoxic waters. However, the difference in uptake rates is probably not great enough to cause significant preferential accumulation of non-protein amino acids.  相似文献   

17.
The Candida albicans CSH3 gene encodes a functional and structural homologue of Shr3p, a yeast protein that is specifically required for proper uptake and sensing of extracellular amino acids in Saccharomyces cerevisiae. A Candida csh3delta/csh3delta null mutant has a reduced capacity to take up amino acids, and is unable to switch morphologies on solid and in liquid media in response to inducing amino acids. CSH3/csh3delta heterozygous strains display normal amino acid induced morphological switching. However, although heterozygous cells apparently sense and properly react to amino acid induced signals they cannot take up amino acids at wild-type rates. Strikingly, both CSH3/csh3delta heterozygous and csh3delta/csh3delta homozygous strains are unable to efficiently mount virulent infections in a mouse model. The haploinsufficiency phenotypes indicate that both CSH3 alleles contribute to maintain high-capacity amino acid uptake in wild-type strains. These results strongly suggest that C. albicans cells use amino acids, presumably as nitrogen sources, during growth in mammalian hosts.  相似文献   

18.
The net total uptake of four amino acids (valine, leucine, lysine and methionine) used at concentrations required for growth, and of thymidine at tracer concentrations, has been studied during the first cell cycle of an asparagine-dependent strain of transformed BHK cells synchronized by asparagine starvation. The rate of the total uptake of the amino acids, the free pool of the amino acids taken up, and the rate of their incorporation into protein at the end of the first cell cycle were, on the average, 12-fold that at the beginning of the cell cycle. The increase in these parameters during the cell cycle was not linear. The uptake of thymidine started before the onset of DNA synthesis and proceeded linearly beyond the peak of the S phase. The rate of accumulation of thymidine into the acid-soluble fraction also increased during the S phase, apart from a tendency to plateau off at the peak of this phase. It reached a second plateau towards the end of the cell cycle, and then declined slightly. Evidence is presented which suggests that the total quantity of protein synthesized during the cell cycle is more than the newly synthesized protein present in the cells at the end of the cell cycle; this indicated degradation and/or secretion of a substantial proportion of the newly synthesized protein. The total protein synthesized at different time points in the cell cycle appeared to contain different proportions of the amino acids used.  相似文献   

19.
The purpose of this study was to investigate whether an amino acid mixture increases glucose uptake across perfused rodent hindlimb muscle in the presence and absence of a submaximal insulin concentration, and if the increase in glucose uptake is related to an increase in GLUT4 plasma membrane density. Sprague-Dawley rats were separated into one of four treatment groups: basal, amino acid mixture, submaximal insulin, or amino acid mixture with submaximal insulin. Glucose uptake was greater for both insulin-stimulated treatments compared with the non-insulin-stimulated treatment groups but amino acids only increased glucose uptake in the presence of insulin. Phosphatidylinositol 3-kinase (PI 3-kinase) activity was greater for both insulin-stimulated treatments with amino acids having no additional impact. Akt substrate of 160 kDa (AS160) phosphorylation, however, was increased by the amino acids in the presence of insulin, but not in the absence of insulin. AMPK was unaffected by insulin or amino acids. Plasma membrane GLUT4 protein concentration was greater in the rats treated with insulin compared with no insulin in the perfusate. In the presence of insulin, amino acids increased GLUT4 density in the plasma membrane but had no effect in the absence of insulin. AS160 phosphorylation and plasma membrane GLUT4 density accounted for 76% of the variability in muscle glucose uptake. Collectively, these findings suggest that the beneficial effects of an amino acid mixture on skeletal muscle glucose uptake, in the presence of a submaximal insulin concentration, are due to an increase in AS160 phosphorylation and plasma membrane-associated GLUT4, but independent of PI 3-kinase and AMPK activation.  相似文献   

20.
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra(Rl)). Characterization of the solute specificity of Bra(Rl) shows it to be the second general amino acid permease of R. leguminosarum. Although Bra(Rl) has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be alpha-amino acids. Consistent with this, Bra(Rl) is the first ABC transporter to be shown to transport gamma-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra(Rl) does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC(Rl). Therefore, a second, unidentified solute binding protein may interact with the BraDEFG(Rl) membrane complex during L-alanine uptake. Overall, the data indicate that Bra(Rl) is a general amino acid permease of the HAAT family. Furthermore, Bra(Rl) has the broadest solute specificity of any characterized bacterial amino acid transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号